Study of the antileukemic activity of Mimosa caesalpiniifolia Benth. ethanolic extract and fractions

Document Type: Original Article

Authors

1 Núcleo de Pesquisas em Plantas Medicinais, Universidade Federal do Piauí, Teresina-PI, Brasil

2 Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Piauí, Teresina-PI, Brasil

3 Departamento de Química, Universidade Federal do Piauí, Teresina-PI, Brasil

4 Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa-PB, Brasil

5 Departamento de Biofísica e Fisiologia, Laboratório de Cancerologia Experimental, Universidade Federal do Piauí, Teresina-PI, Brasil

Abstract

Mimosa caesalpiniifolia Benth. is a native plant to northeastern Brazil, traditionally used in folk medicine, with several pharmacological activities reported including antibacterial, anti-inflammatory, and antitumor. The present study evaluated the antileukemic potential of M. caesalpiniifolia Benth. ethanolic extract (EtOH) and its n-hexanic (HexF) and dichloromethane (DCMF) fractions. Previous analysis by our team revealed the constituents of high relative abundance in EtOH, HexF, and DCMF, like phytol (11.7%), lupeol (14.7%), and betulinic acid (70.3%), respectively. In the MTT cell viability test, EtOH, HexF, and DCMF induced dose-dependent cytotoxicity in human chronic myeloid cells (K562), with IC50 of 153.6 ± 0.1, 118.40 ± 0.2, and 40.0 ± 0.1 μg/mL, respectively (p<0.05). Additionally, DCMF (6-800 μg/mL) presented minor toxicity against normal human erythrocytes and murine macrophage cells. DCMF induced similar antileukemic effects (IC50=64.2 ± 5.0 μg/mL) against human acute myeloid cells (HL-60). However, it did not exert antitumor activity on murine sarcoma (S180) cells (p>0.05).

Graphical Abstract

Study of the antileukemic activity of Mimosa caesalpiniifolia Benth. ethanolic extract and fractions

Keywords


Aguiar, R.M., Alves, C.Q., David, J.M., Rezende, L.C., Lima, L.S., David, J.P., Queiróz, L.P., 2012. Antioxidant activities of isolated compounds from stems of Mimosa invisa Mart. ex. Colla. Quim. Nova 35(3), 567-570.

Ahmed, T., Imam, K.M.S.U., Rahman, S., Mou, S.M., Choudhury, M.S., Mahal, M.J., Jahan, S., Hossain, M.S., Rahmatullah, M., 2012. Antihyperglycemic and antinociceptive activity of Fabaceae family plants-an evaluation of Mimosa pigra L. stems. Adv. Nat. Sci. 6(8), 1490-1495.

Aidi Wannes, W., Mhamdi, B., Saidani Tounsi, M., Marzouk, B., 2017. Lipid and volatile composition of borage (Borago officinalis L.) leaf. Trends Phytochem. Res. 1(3), 143-148.

Alves, M.M.M., Brito, L.M., Souza, A.C., Queiroz, B.C.S.H., de Carvalho, T.P., Batista, J.F., Oliveira, J.S.S.M., de Mendonça, I.L., Lira, S.R.S., Chaves, M.H., Gonçalves, J.C.R., Carneiro, S.M.P., Arcanjo, D.D.R., Carvalho, F.A.A., 2017. Gallic and ellagic acids: two natural immunomodulator compounds solve infection of macrophages by Leishmania major. Naunyn Schmiedebergs Arch. Pharmacol. 390(9), 893-903.

Aratanechemuge, Y., Hibasami, H., Sanpin, K., Katsuzaki, H., Imai, K., Komiya, T., 2004. Induction of apoptosis by lupeol isolated from mokumen (Gossampinus malabarica L. Merr) in human promyelotic leukemia HL-60 cells. Oncol. Rep. 11(2), 289-292.

Camilo, C.J., Alves Nonato, C.d.F., Galvão-Rodrigues, F.F., Costa, W.D., Clemente, G.G., Sobreira Macedo, M.A.C., Galvão Rodrigues, F.F., da Costa, J.G.M., 2017. Acaricidal activity of essential oils: a review. Trends Phytochem. Res. 1(4), 183-198.

Coulidiati, T.H., Dantas, B.B., Faheina-Martins, G.V., Gonçalves, J.C., do Nascimento, W.S., de Oliveira, R.N., Camara, C.A., Oliveira, E.J., Lara, A., Gomes, E.R., Araújo, D.A.M., 2015. Distinct effects of novel naphthoquinone-based triazoles in human leukaemic cell lines. J. Pharm. Pharmacol. 67(12), 1682-1995.

Diop Ndiaye, N., Munier, S., Pelissier, Y., Boudard, F., Mertz, C., Lebrun, M., Mayer, C.D., Dornier, M., 2016. Comparison of phenolic and volatile profiles of edible and toxic forms of Detarium senegalense J. F. GMEL. Afr. J. Biotechnol. 15(16), 622-632.

Ehrhardt, H., Fulda, S., Führer, M., Debatin, K.M., Jeremias, I., 2004. Betulinic acid-induced apoptosis in leukemia cells. Leukemia 18(8), 1406-1412.

Ferreira, P.M.P., Farias, D.F., Viana, M.P., Souza, T.M., Vasconcelos, I.M., Soares, B.M., Pessoa, C., Costa-Lotufo, L.V., Moraes, M.O., Carvalho, A.F.U., 2011. Study of the antiproliferative potential of seed extracts from Northeastern Brazilian plants. An. Acad. Bras. Cienc. 83(3), 1045-1058.

Faujan, N.H., Alitheen, N.B., Yeap, S.K., Ali, A.M., Muhajir, A.H., Ahmad, F.B.H., 2010. Cytotoxic effect of betulinic acid and betulinic acid acetate isolated from Melaleuca cajuput on human myeloid leukemia (HL-60) cell line. Afr. J. Biotechnol. 9(38), 6387-6396.

Fulda, S., 2008. Betulinic acid for cancer treatment and prevention. Int. J. Mol. Sci. 9(6), 1096-1107.

Ganesan, K., Xu, B., 2017. Ethnobotanical studies on folkloric medicinal plants in Nainamalai, Namakkal District, Tamil Nadu, India. Trends Phytochem. Res. 1(3), 153-168.

Gonçalves, J.C.R., Coulidiati, T.C., Monteiro, A.L., Carvalho-Gonçalves, L.C.T., Valença, W.O., Oliveira, R.N., Câmara, C.A., Araújo, D.A.M., 2016. Antitumoral activity of novel 1,4-naphthoquinone derivative involves L-type calcium channel activation in human colorectal cancer cell line. J. Appl. Biomed. 14(3), 229-234.

Leonard, J.P., Martin, P., Roboz, G.J., 2017. Practical implications of the 2016 revision of the world health organization classification of lymphoid and myeloid neoplasms and acute leukemia. J. Clin. Oncol. 35(23), 2708-2715

Lin, L.C., Chiou, C.T., Cheng, J.J., 2011. 5-Deoxyflavones with cytotoxic activity from Mimosa diplotricha. J. Nat. Prod. 74(9), 2001-2004.

Lin, L.C., Chou, C.J., Kuo, Y.C., 2001. Cytotoxic principles from Ventilago leiocarpa. J. Nat. Prod. 64(5), 674-676.

Mohammadhosseini, M., 2017a. Essential oils extracted using microwave-assisted hydrodistillation from aerial parts of eleven Artemisia species: Chemical compositions and diversities in different geographical regions of Iran. Rec. Nat. Prod. 11(2), 114-129.

Mohammadhosseini, M., 2017b. The ethnobotanical, phytochemical and pharmacological properties and medicinal applications of essential oils and extracts of different Ziziphora species. Ind. Crops Prod. 105, 164-192.

Mohammadhosseini, M., Akbarzadeh, A., Hashemi-Moghaddam, H., Mohammadi Nafchi, A., Mashayekhi, H.A., Aryanpour, A., 2016. Chemical composition of the essential oils from the aerial parts of Artemisia sieberi by using conventional hydrodistillation and microwave assisted hydrodistillation: A comparative study. J. Essent. Oil-Bear. Plants 19(1), 32-45.

Mohammadhosseini, M., Sarker, S.D., Akbarzadeh, A., 2017. Chemical composition of the essential oils and extracts of Achillea species and their biological activities: A review. J. Ethnopharmacol. 199, 257-315.

Mohan, G., Anand, S.P., Doss, A., 2011. Efficacy of aqueous and methanol extracts of Caesalpinia sappan L. and Mimosa pudica L. for their potential antimicrobial activity. South As. J. Biol. Sci. 1(2), 48-57.

Monção, N.B.N., Araújo, B.Q., Silva, J.N., Lima, D.J.B., Ferreira, P.M.P., Airoldi, F.P.S., Pessoa, C., Citó, A.M.G.L., 2015. Assessing chemical constituents of Mimosa caesalpiniifolia Stem Bark: Possible bioactive components accountable for the cytotoxic effect of M. caesalpiniifolia on human tumour cell lines. Molecules 20(3), 4204-4224.

Monção, N.B.N., Costa, L.M., Arcanjo, D.D.R., Araújo, B.Q., Lustosa, M.C.G., Rodrigues, K.A.F., Carvalho, F.A.A., Costa, A.P.R., Citó, A.M.G.L., 2014. Chemical constituents and toxicological studies of leaves from Mimosa caesalpiniifolia Benth., a Brazilian honey plant. Pharmacogn. Mag. 10(3), S456-S462.

Mosmann, T., 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65(1-2), 55-63.

Nunes, H.S., Miguel, M.G., 2017. Rosa damascena essential oils: a brief review about chemical composition and biological properties. Trends Phytochem. Res. 1(3), 111-128.

Pavunraj, M., Ramasubbu, G., Baskar, K., 2017. Leucas aspera (Willd.) L.: Antibacterial, antifungal and mosquitocidal activities. Trends Phytochem. Res. 1(3), 135-142.

Rakotomala, G., Agard, C., Tonnerre, P., Tesse, A., Derbré, S., Michalet, S., Hamzaoui, J., Rio, M., Cario-Toumaniantz, C., Richomme, P., Charreau, B., Loirand, G., Pacaud, P., 2013. Extract from Mimosa pigra attenuates chronic experimental pulmonary hypertension. J. Ethnopharmacol. 148(1), 106-116.

Reckzeh, K., Bereshchenko, O., Mead, A., Rehn, M., Kharazi, S., Jacobsen, S.E., Nerlov, C., Cammenga, J., 2012. Molecular and cellular effects of oncogene cooperation in a genetically accurate AML mouse model. Leukemia 26(7), 1527-1536.

Rodrigues, K.A.F., Amorim, L.V., Dias, C.N., Moraes, D.F.C., Carneiro, S.M.P., Carvalho, F.A.A., 2015. Syzygium cumini (L.) Skeels essential oil and its major constituent α-pinene exhibit anti-Leishmania activity through immunomodulation in vitro. J. Ethnopharmacol. 160(2), 32-40.

Saleem, M., 2009. Lupeol, A novel anti-inflammatory and anti-cancer dietary triterpene. Cancer Lett. 285(2), 109-115.

Saleem, M., Afaq, F., Adhami, V.M., Mukhtar, H., 2004. Lupeol modulates NF-kappa B and PI3K/Akt pathways and inhibits skin cancer in CD-1 mice. Oncogene 23(30), 5203-5214.

Silva, J.N., Drumond, R.R., Monção, N.B.N., Peron, A.P., Sousa, J.M.C., Citó, A.M.G.L., Ferreira, P.M.P., 2016. Prospective study about antineoplasic properties of plants from Fabaceae family: emphasis in Mimosa caesalpiniifolia. Geintec 6(3), 3304-3318.

Sousa, S.M., Reis, A.C., Viccini, L.F., 2013. Polyploidy, B chromosomes, and heterochromatin characterization of Mimosa caesalpiniifolia Benth. (Fabaceae-Mimosoideae). Tree Genet. Genomes 9(2), 613-619.

Terwilliger, T., Abdul-Hay, M., 2017. Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer J. 7, e577.

Vinothapooshan, G., Sundar, K., 2010. Anti-ulcer activity of Mimosa pudica leaves against gastric ulcer in rats. Res. J. Pharm. Biol. Chem. Sci. 1(4), 606-614.

Wu, Q., He, J., Fang, J., Hong, M., 2010. Antitumor effect of betulinic acid on human acute leukemia K562 cells in vitro. J. Huazhong Univ. Sci. Technolog. Med. Sci. 30(4), 453-457.