Biological activities of the methanolic extracts and compounds from leaves and twigs of Diospyros zenkeri (Gürke) F. White (Ebenaceae)

Document Type: Original Article

Authors

1 Department of Chemistry, Faculty of Science, University of Douala P.O. Box 24157 Douala-Cameroon

2 H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi-75270, Pakistan

3 Department of Organic Chemistry, Faculty of Science, University of Yaounde I P.O. Box 812 Yaounde-Cameroon

4 Multi-Disciplinary Research Laboratory Bahria University Medical and Dental College, Karachi, Pakistan

5 Dr. Panjwani Center for Molecular Medicine and Drug Research International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan

Abstract

This study aimed for investigating chemical constituents and biological activities of Diospyros zenkeri (Gürke) F. White. 14 known secondary metabolites have been isolated from the leaves and the twigs of D. zenkeri such as 3-methoxy-7-methyljuglone (1), β-carotene (2), lupeol (3), mixture of β-sitosterol (4) and stigmasterol (5), betulin (6), ursolic acid (7), messagenin (8), 3β,28,30-lup-20(29)-ene triol (9), mixture of the glucosides of stigmasterol (10) and β-sitosterol (11), norbergenin (12), betulinic acid (13) and vanillic acid (14), respectively . The structures of the compounds were elucidated with the help of NMR and mass spectral studies. The compounds 8, 9 and 14 are reported for the first time from the genus Diospyros. The biological screening of all the isolates and the crude methanolic extracts have been carried out including antiproliferative activity, antioxidant potential and inhibitory activity against the enzymes lipoxygenase and urease, respectively. Compound 1 exhibited significant antiproliferative activity against two cancer cell lines CAL-27 (IC50=2.98 μM) and NCI-H460 (IC50=5.57 μM). Methanolic extracts of the leaves and twigs of D. zenkeri presented low antiproliferative activity against these two cancer cell lines. Compounds 1, 6, 8, 9, 12 and the crude extracts exhibited moderate antioxidant activity with IC50 values of 76.5 μM, 65.8 μM, 55.3 μM and 51.2 μM respectively compared to BHA (IC50=44.2 μM). Compounds 6, 8 and 9 showed moderate lipoxygenase inhibition activity with IC50 values of 58.5 μM, 52.8 μM and 58.8 μM, respectively compared to baicalein (IC50=22.6 μM).

Graphical Abstract

Biological activities of the methanolic extracts and compounds from leaves and twigs of Diospyros zenkeri (Gürke) F. White (Ebenaceae)

Keywords


Antonio, C., Gonzalez, I., Jimenez, A., Angel, G., 1992. Triterpenes from Maytenus canariensis and synthesis of a derivative from betulin. Phytochemistry 31, 2069-2072.

Baikar, S., Malpathak, N., 2010. Secondary metabolites as DNA topoisomerase inhibitors: a new era towards designing of anticancer drugs. Pharmcogn. Rev. 4, 12-26.

 Budzianowski, J., 1995. Naphthoquinones of Droseras pathulata from in vitro cultures.

Phytochemistry 40, 1145-1148.

 Burkil, H.M., 1985. The Useful Plants of West Tropical Africa. Royal Botanic Gardens, Kew, United Kingdom, p. 332.

 Chaturvedula, V., Indra, P., 2012. Isolation and structural characterization of lupine

triterpenes from Polypodium vulgare. Res. J. Pharm. Sci. 1, 23-27.

 Chen, X.N., Fan, J.F., Yue, X., Wu, X.R., Li, L.T., 2008. Radical scavenging activity and
phenolic compounds in Persimmon (Diospyros kaki L. cv. Mopan). J. Food Sci. 73,
C24-C28.

 Chi-Ren, L., Yueh-Hsiung, K., Yu-Ling, H., Ching-Ying, W., Chang-Syun, Y., Cheng-Wen, L., Yuan-Shiun, C., 2014. Studies on cytotoxic constituents from the leaves of Elaeagnus oldhamii Maxim. in non-small cell lung cancer A549 cells. Molecules 19, 9515-9534.

 Dongmo, J.D., Mvot Akak, C., Feussi T.M., Belle E.K.P., Azebaze, A.G.B., Vardamides, J.C., Laatsch, H., 2018. Longiflorol, a bergenin α-d-apioside from the stem bark of Diospyros longiflora, and its antioxidant activity. Z. Naturforsch 73B, 539-543.

 Feumo, F.H.M., Mvot Akak, C., Feussi, T.M., Azebaze, A.G.B., Tsabang, N.,
Vardamides, J.C., Laatsch, H., 2016. Conocarpol, a new cycloartane triterpenoid
from Diospyros conocarpa. Z. Naturforsch 71B, 935-940.

 Feumo, F.H.M., Mvot Akak, C., Feussi, T.M., Azebaze, A.G.B., Vardamides, J.C., Laatsch, H., 2017. Mannic acid, a new ent-kaurane dimer diterpenoid and other chemical constituents from different parts of Diospyros mannii. Biochem. Syst. Ecol. 74, 51-56.

 Frezza, C., Venditti, A., Serafini, I., Carassiti, A., Foddai, S., Bianco, A., Serafini, M., 2017. Phytochemical characteristics of Galeopsis ladanum subsp. angustifolia (Ehrh. ex Hoffm.) Gaudin collected in Abruzzo region (Central Italy) with chemotaxonomic and ethnopharmacological implications. Trends Phytochem. Res. 1(2), 61-68.

 Ganesan, K., Xu, B., 2017. Ethnobotanical studies on folkloric medicinal plants in Nainamalai, Namakkal District, Tamil Nadu, India. Trends Phytochem. Res. 1(3), 153-168.

Gulcin, I., Alici, H., Cesur, M., 2005. Determination of in vitro antioxidant and radical

scavenging activites of propofol. Chem. Pharm. Bull. 53, 281-285.

 Hansen, M., Nielsen, S., Berg, K., 1989. Re-examination and further development of a

precise and rapid dye method for measuring cell growth/cell kill. J. Immunol. Methods 119, 203-210.

 Hee Rae, K., Hee Jeong, E., Seoung, R., Sang, U., Ki Sung, K., Kang Ro, L., Ki Hyun, K., 2015. Bioassay-guided isolation of antiproliferative triterpenoids from Euonymus alatus

twigs. Nat. Prod. Commun. 10, 1929-1932.

 Jain, N., Yadava, R., Peregrinol, 1994. A lupane type triterpene from the fruits of Diospyros peregrina. Phytochemistry 35, 1070-1072.

 Kuo, Y., Chang, C., Kuo, Y., 1997. Triterpenes from Diospyros maritima. Phytochemistry 46, 1135-1137.

Letouzey R., 1966. Recherches sur la nomenclature botanique des Pygmées. In: Journal d'agriculture tropicale et de botanique appliquée, vol. 13, n°10-11, pp. 479-543.

 Luhata, L., Munkombwe, N., 2015. Isolation and characterization of stigmasterol and sitosterol from Odontonema strictum (Acanthaceae). J. Innov. Pharm. Biol. Sci. 2, 88-95.

 Mallavadhani, U.V., Panda, A.K., Rao, Y.R., 1998. Review article number 134 pharmacology and chemotaxonomy of Diospyros. Phytochemistry 49, 901-951.

 Mohammadhosseini, M., Venditti, A., Sarker, S.D., Nahar, L., Akbarzadeh, A., 2019. The genus Ferula: Ethnobotany, phytochemistry and bioactivities - A review. Ind. Crops Prod. 129, 350-394.

Mohammadhosseini, M., Sarker, S.D., Akbarzadeh, A., 2017. Chemical composition of the essential oils and extracts of Achillea species and their biological activities: A review. J. Ethnopharmacol. 199, 257-315.

Nalini, M., Jonathan, W., Olson, Robert, J., 2002. Characterization of Helicobacter pylori Nickel metabolism accessory proteins needed for maturation of both urease and hydrogenase. J. Bacterial. 185, 726-734.

Nunes, H.S., Miguel, M.G., 2017. Rosa damascena essential oils: a brief review about chemical composition and biological properties. Trends Phytochem. Res. 1(3), 111-128.

 Rail, N., Adhikari, B., Arjun, P., Masuda, K., Mckelvey R., Manandhar, M., 2006. Phytochemical constituents of the flowers of Sarcococca coriacea of Nepalese origin. J. Nepal Chem. Soc. 21, 1-7.

 Reiko, S., Genichiro, N., Itsuo, N., 1990. Gallic acid esters of bergenin and norbergenin from Mallotus japonicus. Phytochemistry 29, 267-270.

Saikat, D., Anup, K.D., Ranabir, S., Moumita, G., 2009. Antidiabetic activity of Diospyros peregrina fruit: Effect on hyperglycemia, hyperlipidemia and augmented oxidative stress in experimental type 2 diabetes. Food Chem. Toxicol. 47, 2679-2685.

Sang Wook, C., Ki Hyun, K., IlKyun, L., Sang Un, C., Shi Yong, R., Kang Ro, L., 2009. Phytochemical constituents of Bistorta manshuriensis. Nat. Prod. Sci. 15, 234-240.

 Shinichi, T., 2014. General methods for identification of carotenoids. Biotechnol. Lett. 36, 1127-1128.

 Sofowara, E., 1996. Plantes Médicinales et Médecine Tropicale d’Afrique, 2nd Ed, Vol.1.

Karthala, Paris, France, pp. 1-256.

 Subhasree, B., Baskar, R., Keerthana, R., Susan, R., Rajasekaran, P., 2009. Evaluation of anti- oxidant potential in selected green leafy vegetables. Food Chem. 115, 1213-20.

 Tangmouo, J.G., Lontsi, D., Ngounou, F.N., Kuete, V., Meli, A.L., Manfouo, R.N., Kamdem, H.W., Tane, P., Beng, V.P., Sondengam, B.L., Connolly, J.D., 2005. Diospyrone, a new coumarinylbinaphthoquinone from Diospyros canaliculata (Ebenaceae): structure
and antimicrobial activity. Bull. Chem. Soc. Ethiopia 19, 81-88.

 Tappel, 1962. Methods of Enzymology. Vol. 5. NewYork Academic Press, pp. 539-542.

 Tijjani, A., Ndukwe, I., Ayo, R., 2012. Isolation and characterization of lup-20(29)-ene-3, 28-diol (betulin) from the stem-bark of Adenium obesum (Apocynaceae). Trop. J. Pharm. Res. 11, 259-262.

 Wansi, J.D., Sewald, N., Nahar, L., Martin, C., Sarker, S.D., 2019. Bioactive essential oils from the Cameroonian rain forest: A review - Part II. Trends Phytochem. Res. 3, 3-52.

 Wansi, J.D., Sewald, N., Nahar, L., Martin, C., Sarker, S.D., 2018. Bioactive essential oils from the Cameroonian rain forest: A review - Part I. Trends Phytochem. Res. 2, 187-234.

 Weatherburn, M.W, 1967. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 39, 971-974.

 Werner, S., Nebojsa, S., Robert, W., Robert, S., Kunert, O., 2003. Complete assignments of 1H and 13C NMR resonances of oleanolic acid, 18α-oleanolicacid, ursolic acid and their 11-oxo derivatives. Magn. Reson. Chem. 41, 636-638.