Morphological and chemical characterization of two wild Tunisian myrtle (Myrtus communis L.) populations

Document Type: Original Article


Laboratory of Aromatic and Medicinal Plants, Biotechnologic Center of Borj-Cedria, BP 901, 2050 Hammam-Lif, Tunisia


Myrtle is an aromatic and medicinal shrub growing wild in the Mediterranean regions. The objective of this study was to determine qualitative and quantitative morphological characteristics and to analyze the biochemical composition of two wild Tunisian myrtle populations from Bizerte (BM) and Haouaria (HM). These two populations presented the same vegetative characters but with some morphological differences such as the bigger size of BM fruits and leaves. The biochemical characterization revealed that there was an increase in the production of phenols during flowering in both populations, and there was a significant variation in their levels in the various organs. The phenolic fraction of myrtle leaf and the fruit was rich in tannins while the stem was rich in flavonoids. Methanol extracts of different myrtle parts, especially leaf, presented strong antioxidant activities.

Graphical Abstract

Morphological and chemical characterization of two wild Tunisian myrtle (Myrtus communis L.) populations


Main Subjects

Agrimonti, C., Bianchi, R., Bianchi, A., Ballero, M., Poli, F., Marmiroli, N., 2007. Understanding biological conservation strategies: A molecular-genetic approach to the case of myrtle (Myrtus communis L.) in two Italian Regions: Sardinia and Calabria. Conserv. Genet. 8(2), 385-396.

Aidi Wannes, A., Mhamdi, B., Sriti, J., Ben Jemia, M., Ouchikh, O., Hamdaoui, G., Kchouk, M.E., Marzouk, B., 2010. Antioxidant activities of the essential oils and methanol extracts from myrtle (Myrtus communis var. italica L.) leaf, stem and flower. Food Chem. Toxicol. 48(5), 1362-1370.

Aidi Wannes, W., Marzouk, B., 2013. Differences between myrtle fruit parts (Myrtus communis var. italica) in phenolics and antioxidant contents. J. Food Biochem. 37(5), 585-594.

Aidi Wannes, W., Mhamdi, B., Marzouk, B., 2007. Essential oil composition of two Myrtus communis L. varieties grown in North Tunisia. Ital. J. Biochem. 56(2), 180-186.

Aidi Wannes, W., Mhamdi, B., Marzouk, B., 2009. Variations in essential oil and fatty acid composition during Myrtus communis var. italica fruit maturation. Food Chem. 112(3), 621-626.

Aidi Wannes, W., Marzouk, B., 2012. Maturational effect on essential oil yield and composition of Myrtus communis var. baetica fruit. J. Essent. Oil bear. Pl. 15(5), 847-853.

Aidi Wannes, W., Marzouk, B., 2016. Characterization of myrtle seed (Myrtus communis var. baetica) as a source of lipids, phenolics, and antioxidant activities. J. Food Drug Anal. 24(2), 1-8.

Aidi Wannes, W., Mhamdi, B., Sriti, J., Bettaieb, I., Saidani Tounsi, M., Marzouk, B., 2011. Fatty acid and glycerolipid changes during Tunisian myrtle (Myrtus communis var. italica) fruit ripening. J. Food Biochem. 35(1), 177-194.

Aleksic, V., Knezevic, P., 2014. Antimicrobial and antioxidative activity of extracts and essential oils of Myrtus communis L. Microbiol. Res. 169(4), 240-254.

Anwar, S, Crouch, R.A., Awadh Ali, N.A., Al-Fatimi, M.A., Setzer, W.N., Wessjohann, L., 2017. Hierarchical cluster analysis and chemical characterisation of Myrtus communis L. essential oil from Yemen region and its antimicrobial, antioxidant and anti-colorectal adenocarcinoma properties. Nat. Prod. Res. 31(18), 2158-2163.

Aydin, C., Özcan, M.M., 2007. Determination of nutritional and physical properties of myrtle (Myrtus communis L.) fruits growing wild in Turkey. J. Food. Eng. 79(2), 453-458.

Barboni, T., Venturini, N., Paolini, J., Desjobert, J.M., Chiaramonti, N., Costa, J., 2010. Characterisation of volatiles and polyphenols for quality assessment of alcoholic beverages prepared from Corsican Myrtus communis berries. Food Chem. 122(4), 1304-1312.

Bowler, C., Van Montagu, M., Inze, D., 1992. Superoxyde dismutase and stress tolerance. Ann. Rev. Plant Physiol. Plant Mol. Biol. 43, 83-116.

Cannas, S., Molicotti, P., Ruggeri, M., Cubeddu, M., Sanguinetti, M., Marongiu, B., Zanetti, S., 2013. Antimycotic activity of Myrtus communis L. towards Candida spp. from clinical isolates. J. Infect. Dev. Ctries, 7(3), 295-298.

Dewanto, V., Wu, X., Adom, K.K., Liu, R.H., 2002. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 50(10), 3010-3014.

Fadda, A., Mulas, M., 2010. Chemical changes during myrtle Myrtus communis L.) fruit development and ripening. Sci. Horticult. 5(3), 477-485.

Gardeli, C., Papageorgiou, V., Mallouchos, A., Theodosis, K., Komaitis, M. 2008. Essential oil composition of Pistacia lentiscus L. and Myrtus communis L.: Evaluation of antioxidant capacity of methanolic extracts. Food Chem. 107(3), 1120-1130.

Hagerman, A.E., Butler, L.G., 1978. Protein precipitation method for the quantitative determination of tannins. J. Agric. Food Chem. 26(4), 809-812.

Hanato, T., Kagawa, H., Yasuhara, T., Okuda, T., 1988. Two new flavonoids and other constituents in licorice root their relative astringency and radical scavenging effect. Chem. Pharmt. Bull. 36(6), 1090-1097.

Hayder, N., Abdelwahed, A., Kilani, S., Ben Ammar, R., Mahmoud, A., Ghedira, K., Chekir Ghedira, L., 2004. Antimutagenic and free radical scavenging activities of extracts from (Tunisian) Myrtus communis. Mutat. Res.564(1), 89-95.

Khan, N., Rasool, S., Ali Khan, S., Bahadar Khan, S., 2019. A new antibacterial dibenzofuran-type phloroglucinol from Myrtus communis linn, Nat. Prod. Res., doi: 10.1080/14786419.2018.1556657.

Koleva, I.I., Teris, A.B., Jozef, P.H., Linssen, A.G., Lyuba, N.E., 2002. Screening of plant extracts for antioxidant activity: a comparative study on three testing methods. Phytochem. Anal. 13(1), 8-17.

Lima, V.L.A.G., Melo, E.A., Maciel, M.I.S., Prazeres, F.G., Musser, R.S., Lima, D.E.S., 2005. Total phenolic and carotenoid contents in acerola genotypes harvested at three ripening stages. Food Chem. 90(4), 565-568.

Mahmood, T., Anwar, F., Abbas, M., Saari, N., 2012. Effect of maturity on phenolics (phenolic acids and flavonoids) profile of strawberry cultivars and mulberry species from Pakistan. Int. J. Mol. Sci. 13(4), 4591-4607.

Marchiori, N.C., Sobral, M., 1997. 'Dendrologia das angiospermas: Myrtales. Santa Maria: Ed. da JFSM, 304 p.

Mau, J.L., Chao, G.R., Wu, K.T., 2001. Antioxidant properties of methanolic extracts from several ear mushrooms. J. Agric. Food Chem. 49(11), 5461-5467.

Medini F., Fellah H., Ksouri R., Abdelly, C., 2014. Total phenolic, flavonoid and tannin contents and antioxidant and antimicrobial activities of organic extracts of shoots of the plant Limonium delicatulum. J. Taibah Univ. Sci. 8(3), 216-224.

Melito S., La Bella S., Martinelli F., Cammalleri I., Tuttolomondo T., Leto C., Fadda A., Molinu M.G., Mulas M., 2016. Morphological, chemical, and genetic diversity of wild myrtle (Myrtus communis L.) populations in Sicily. Turk. J. Agric. For. 40, 249-261.

Messaoud C., Khoudja M., Boussaid M., 2006. Genetic diversity and structure of wild Tunisian Myrtus communis L. (Myrtaceae) populations. Genet. Resour. Crop. Evol. 53(2), 407-417

Messaoud, C., Zaouali, Y., Ben Salah, A., Khoudja, M.L., Boussaid, M. (2005) - Myrtus communis in Tunisia: Variability of the essential oil composition in natural populations. Flav. Fragr. J. 20(6), 577-582.

Mulas, M., 2012. The myrtle (Myrtus communis L.) case, from a wild shrub to a new fruit crop. Acta Horticult. 948(27), 235-242.

Mulas, M., Cani, M.R., 1999. Germoplasm evaluation of spontaneous myrtle (Myrtus communis L.) for cultivar selection and crop development. J. Herbs Spices Med. Plants 6(3), 31-49.

Müller-Riebau, F.J., Berger, M.B., Yegen, O., Cakir, C., 1997. Seasonal variations in the chemical compositions of essential oils of selected aromatic plants growing wild in Turkey.J. Agric. Food Chem. 45(12), 4821-4825.

Naczk, M., Shahidi, F., 2004. Extraction and analysis of phenolics in food. J. Chromatogr. 1054(1-2), 95-111.

Narayan, M.S., Naidu, K.A., Ravishankar, G.A., Srinivas, L., Venkataraman, L.V., 1999. Antioxidant effect of anthocyanin on enzymatic and non-enzymatic lipid peroxidation. Prostaglandins Leukot. Essent. Fatty Acids 60(1), 1-4.

Oyaizu, M., 1986. Studies on products of the browning reaction: Antioxidative activities of browning reaction. Jap. J. Nutr. 44(6), 307-315.

Panjeshahin, M.R., Azadbakht, M., Akbari, N., 2016. Atidiabetic activity of different extracts of Myrtus communis in streptozotocin induced diabetic rats. Rom. J. Diabetes Nutr. Metab. Dis. 23(2), 183-190.

Patel, P.R., Rao, T.V.R., 2009. Physiological changes in relation to growth and ripening of khirni [Manilkara hexandra (Roxb.) Dubard] fruit. Fruits 64(3), 139-146.

Pineli, L.L.O., Moretti, C.L., Santos, M.S., Campos, A.B., Brasileiro, A.V., Cordova, A.C, Chiarello, M.D., 2011. Antioxidants and other chemical and physical characteristics of two strawberry cultivars at different ripeness stages. J. Food Compos. Anal. 92(1), 831-838.

Pottier Alapetite, G., 1979. Flore de la Tunisie, Première partie. Eds., Publications Scientifiques Tunisiennes, Tunis, 654 p.

Sanna, D, Mulas, M, Molinu, M.G., Fadda, A., 2019. Oxidative stability of plant hydroalcoholic extracts assessed by EPR spin trapping under forced ageing conditions: A myrtle case study. Food Chem. 271, 753-761.

Scazzocchio, F., Garzoli, S., Conti, C., Leone, C., Renaioli, C., Pepi, F., Angiolella, L., 2016. Properties and limits of some essential oils: chemical characterisation, antimicrobial activity, interaction with antibiotics and cytotoxicity. Nat. Prod. Res. 30(17), 1909-1918.

Serrano, M., Guillen, F., Martinez-Romero, D., Castillo, S., Valero, D., 2005. Chemical constituents and antioxidant activity of sweet cherry at different ripening stages. J. Agric. Food Chem. 53(7), 2741-2745.

Serce, S., Ercisli, S., Sengul M., Gunduz, K., Orhan, E., 2010. Antioxidant activities and fatty acid composition of wild grown myrtle (Myrtus communis L.) fruits. Pharmacognosy Med. 6(21), 9-12.

Sun, B., Richardo-da-Silvia, J.M., Spranger, I., 1998. Critical factors of vanillin assay for catechins and proanthocyanidins. J. Agric. Food Chem. 46(10), 4267-4274.

Talebianpoor, M.S., Talebianpoor, M.S., Mansourian, M., Vafaiee-Nejad, T., 2019. Antidiabetic activity of hydroalcoholic extract of Myrtus communis (myrtle) fruits in streptozotocin-induced and dexamethasone-induced diabetic rats. Pharmacognosy Res. 11(2), 115-120.

Tardugno, R., Pellati, F., Iseppi, R., Bondi, M., Bruzzesi, G., Benvenuti, S., 2018. Phytochemical composition and in vitro screening of the antimicrobial activity of essential oils on oral pathogenic bacteria. Nat. Prod. Res. 32(5), 2018.

Toor, R.K., Savage, G.P., Lister, C.E., 2006. Seasonal variations in the antioxidant composition of greenhouse grown tomatoes. J. Food Compos. Anal. 19(1), 1-10.

Traveset, A., Riera, N., Mas, R.E., 2001. Ecology of fruit-colour polymorphism in Myrtus communis and differential effects of birds and mammals on seed germination and seedling growth. J. Ecol. 89(5), 749-760.

Tuberoso, C.I.G., Barra, A., Angioni, A., Sarritzu, E., Pirisi, F.M., 2006. Chemical composition of volatiles in Sardinian myrtle (Myrtus communis L.) alcoholic extracts and essential oils. J. Agric. Food Chem. 54(4), 1420-1430.

Tuberoso, C.I.G., Melis, M., Angioni, A., Pala, M., Cabras, P., 2007. Myrtle hydroalcoholic extracts obtained from different selections of Myrtus communis L. Food Chem, 101(2), 806-811.

Usai, M., Marchetti, M., Mulas, M., 2015. Chemical composition of essential oils of leaves and flowers from five cultivars of myrtle (Myrtus communis L.). J. Essent. Oil Res. 27(6), 465-476.

Usai, M., Marchetti, M., Culeddu, N., Mulas M., 2018. Chemical composition of myrtle (Myrtus communis L.) berries essential oils as observed in a collection of genotypes. Molecules 23, 1-20.

Wang, S.Y., Zheng, W., Effect of plant growth temperature on antioxidant capacity in strawberry. J. Agric. Food Chem. 49(10), 4977-4982.

Yang, J., Gadi, R., Thomson, T., 2011. Antioxidant capacity, total phenols, and ascorbic acid content of noni (Morinda citrifolia) fruits and leaves at various stages of maturity. Micronesica 41(2), 167-176.