Document Type : Original Article


1 Phytopharmaceuticals Research Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, P.O. Hamdard Nagar, New Delhi-110062, India

2 College of Pharmacy, Jazan University, Jazan, Saudi Arabia


Withania coagulans (Stocks) Dunal (family: Solanaceae) is a rigid undershrub found in Iran, Afghani­stan, Pakistan, northern India and Nepal. Its fruits are used to treat asthma, biliousness, flatulent colic, cough, diabetes, dyspepsia, liver complaints, intestinal infections, skin rashes, stomachache, strangury and wounds. The air-dried fruits of W. coagulans were exhaustively extracted with methanol in a Soxhlet apparatus. The concentrated methanol extract was adsorbed on silica gel to be chromatographed on a silica gel column. The column was eluted with dichloromethane, ethyl acetate and methanol suc­cessively to isolate ten new phytoconstituents characterized as (3R,4R)-dihydroxyadipic-γ,γ’-dilactone (n-hexa-1(3),4(5)-diolide, 2), (20S,22R)-1-oxo-witha-2,24-dienolide (withacoagulanide A, 3), (20S,22R)- 1-oxo-witha-24-enolide (withacoagulanide B, 4), (20S,22R)-1-oxo-witha-6β-ol-2,24-dienolide (witha­coagulanide C, 5), (20S,22R)-1-oxo-witha-3β,5β-diol-24-enolide (withacoagulanide D, 6), (20S,22R)-1- oxo-witha-6β-ol-2,24-dienolide-6β-D-arabinopyranosyl-2′-(2′′-methoxy)-benzoate (withacoagunalide C 6-arabinosyl 2′-O-anisate, 7), (20S,22R)-1-oxo-witha-3β-ol-24-enolide-3β-O-D-galactoyranosyl- (2′→1′′)-β-O-D-galactopyranoside (3-O-digalactosyl withacoagulanide B, 8), 1-oxo-3-seco-witha-21, 27, 28-trioic acid-24-ene-6β-ol-19(8), 18(11)-diolide-6β-O-D-galacuronopyranoside (3-secowithacoag­ulanolide 6β-olyl galactourinoside, 10), (20S,22R)-1-oxo-witha-6β-ol-2,24-enolide-6β-O-D-(4′-acetoxy arabinopyranosyl-(2′→1′′)-(3′′,4′′-diacetoxy arabinopyranosyl)-2′′-(2′′′-methoxy)-benzoate (withacoag­ulanide C 6β-olyl diarabinosyl 2′′-(O)-anisate, 11) and n-hexanoyl-β-O-D-xylopyranosyl-(2′→1′′)-β-O-D-xylopyranosyl-(2′′→1′′′)-β-O-D-xylopyrano- side (caproyl trixyloside, 12) along with the known rare chemical compounds identified as cetyl palmitate (hexadecyl hexadecanoate, 1) and glyceryl-1,2-di­hexadecanoate-3-phosphate (glyceryl-1,2-dipalmityl 3-phosphate, 9). The structures of isolated phyto­constituents were established on the basis of analysis of spectral data and chemical means.

Graphical Abstract

Chemical constituents from the fruits of Withania coagulans (Stocks) Dunal


Ali, A., Jameel, M., Ali, M., 2015. New fatty acid, aromatic ester and monoterpenic benzyl glucoside from the fruits of Withania coagulans Dunal. Nat. Prod. Res.  29(14), 1307-1314.
Ali, A., Jameel, M., Ali, M., 2017. Analysis of fatty acid composition of Withania coagulans fruits by gas chromatography/mass spectrometry. Res. J. Pharmacogn. 4(4), 1-6.
 Ali, A., Jameel, M., Ali, M., 2014. New withanolide, acyl and menthyl glucosides from fruits of Withania coagulans Dunal.Acta Pol. Pharm. 71(3), 423-430.
Anonymous, 1996. The Wealth of India. A Dictionary of Indian Raw Materials and Industrial Products. Publication & Information Directorate, CSIR, New Delhi, pp. 947-949.
Anonymous, 2009. The Wealth of India; Raw Materials. NISCOM (CSIR), New Delhi, Vol. 10, pp. 580-585.
Atta-ur-Rahman, Choudhary, M.I., Qureshi, S., Gul, W., Yusaf, M., 1998a. Two new ergostane-type steroidal lactones from Withania coagulans. J. Nat. Prod. 61(6), 812-814.
 Atta-ur-Rahman, Choudhary, M.I., Yousaf, M., Gul, W., Qureshi, S., 1998b. New withanolides from Withania coagulans. Chem. Pharmac. Bull. 46(12), 1853-1856.
Atta-ur-Rahman, Dur-e-Shahwar, Naz, A., Choudhary, M.I., 2003. Withanolides from Withania coagulans. Phytochemistry 63, 387-390.
 Atta-ur-Rahman, Shabbir, M., Dur-e-Shahwar, Choudhary, M.I., Voelter, W., Hohnholz, D., 1998c. New steroidal lactones from Withania coagulans. Heterocycles 47 (2), 1005-1012.
Atta-ur-Rahman, Shabbir, M., Yousaf, M., Qureshi, S., Dur-e-Shahwar, Naz, A., Choudhary, M.I., 1999. Three withanolides from Withania coagulans. Phytochemistry 52(7), 1361-1364.
Atta-ur-Rahman, Yousaf, M., Gul, W., Qureshi, S., Choudhary, M.I., Voelter, W., Hoff, A., Jens, F., Naz, A., 1998d. Five new withanolides from Withania coagulans. Heterocycles 48, 1801-1811.
Baker, J.T., Borris, R.P., Carte, B., Cordell, G.A., Soejarto, D.D., Cragg, G.M., Gupta, M.P., Iwu, M.M., Madulid, D.R., Tyler, V.E., 1995. Natural product drug discovery and development: New perspective on international collaboration. J. Nat. Prod. 58, 1325-357
Bakhtawar, S., Mughal, T., Naeem, I., 2010. Chemical composition of the essential oil of Withania coagulans. Asian J. Chem. 22(1), 122-126.
Bare, N.B., Jadhav P.S., 2017. Pharmaceutical importance of Withania coagulans in health and diseases. Int. J. Adv. Sci. Engin. Techn. 5(1), Spl. Issue-3, 41-44.
Bown D., 1995. Encyclopedia of Herbs and their Uses. Dorling Kindersley, London. p. 500.
Chaudhary, R.D., 2006. Herbal drugs Industry, Eastern Publishers, 1st Edition, New Delhi, p. 45.
Chepkorir R., Matasyoh J.C., Wagara I.N., 2018. Two withanolides from Withania somnifera (Solanaceae) and activity of methanolic extracts against fungal and bacterial pathogens that affects food crops. African J. Food Sci. 12(5), 115-125.
Choudhary, M.I., Dur-E-Shahwar, Zeba, P., Jabbar, A., Ali, I., Atta-ur- Rahman., 1995. Antifungal steriodal lactones from Withania coagulans. Phytochemistry 40, 1243-1246.
 Dymock, W., Waden, C.J.H., Hopper, D., 1972. Pharmacographia Indica, Institute of health and TB Research, Karachi, p. 306.
Edalatifard, L., Sanavy, S.A.M.M, Askari, H., 2014. The optimum condition under light and Media for Seed germination of Withania coagulans. Int. J. Farm. Allied Sci. 3(7), 722-728.
Fang, S.T., Liu, J.K., Li, B., 2010. A novel 1,10-seco withanolide from Physalis peruviana. J Asian Nat Prod Res. 12(7), 618-22. doi: 10.1080/10286020.2010.482523.
Gupta, P., 2012. Withania coagulans Dunal- An overview. Int. J. Pharma. Sci. Rev. Res.  12(2), 68-71·
Gupta, P., Singh, P., 2018. Withania cogulance-A miracle for diabetes. Int. J. Recent Trends Sci. Techn. 203-207.
Gupta, S.S., 1994. Prospects and perspectives of natural plant products in medicine. Indian J. Pharmacol. 26, 1-12.
Haq, I., Youn, U.J., Chai, X., Park, E.J., Kondratyuk, T.P., Simmons, C.J., Borris, R.P., Mirza, B., Pezzuto, J.M., Chang, L.C., 2013. Biologically active withanolides from Withania coagulans. J. Nat. Prod. 76(1), 22-28. doi: 10.1021/np300534x.
HemLatha, S., Wahi, A.K., Singh, P.N., Chansouria, J.P.N., 2004. Hypoglycemic activity of Withania coagulans Dunal in streptozotocine induced diabetic rats, J. Ethnopharm. 93, 261-264.

Holman R.T., 1981. Progress in Lipid Research, Oxford, England, 18, 24.

Huang, C.F., Ma, L., Sun, L.J., Ali, M., Arfan, M., Liu, J.W., Hu, L.H., 2009. Immunosuppressive withanolides from Withania coagulans. Chem. Biodivers. 6. 1415-1426.
Jahan E., Perveen S., Fatima I., Malik A., 2010. Coagulansins A and B, New withanolides from Withania coagulans Dunal. HelveticaChimica Acta. 93, 530-535.
Jaiswa, l. D., Rai, P.K., Watal, G., 2009. Antidiabetic effect of Withania coagulans in experimental rats. Indian J. Clinical Biochem. 24 (1), 88-93.
Khodaei, M., Jafari, M., Noori, M., 2012. Remedial use of withanolides from Withania coagolans (Stocks) Dunal. Advances in Life Sci. 2(1), 6-19. DOI: 10.5923/j.als.20120201.02
Kirtikar, K.R., Basu, B.D., 1999. Indian Medicinal Plants with Illustrations. International Book Distributors. 3, p. 1774-1777.

 Kuboyama, T., Tohda, C., Komatsu, K., 2005. Neuritic regeneration and synaptic reconstruction induced by withanolide A. Br. J. Pharmacol. 144 (7), 961-971.

 Kung, S.S., Ciereszko, L.S., 1985. Occurrence of the wax cetyl palmitate in stomachs of the Corallivorous butterfly fish Chaetodon trifascialis. Coral Reefs 4(1), 45-46.
Lavie, D., Kirson, I., Glotter, E., Snatzke, G., 1970. Conformational studies on certain 6- membered ring lactones. Tetrahedron 26, 2221- 2228.
Lin, R., Guan, Y.Z., Li, R.J., Xu, X.M., Luo, J.G., Kong, L.Y., 2016. 13,14-seco-Withanolides from Physalis minima with potential anti-inflammatory activity. Chem Biodivers. 13(7), 884-90. doi: 10.1002/cbdv.201500282.
Mathur, D., Agrawal, R. C., Shrivastava, V., 2011. Phytochemical screening and determination of antioxidant potential of fruits extracts of Withania coagulans. Recent Res. Sci. Techn. 3(11), 26-29.
Mathur, D., Agrawal, R.C., 2011. Evaluation of in vivo antimutagenic potential of fruits extracts of Withania coagulans. Der Pharma Chem. 3(4), 373-376.
Maurya R., Akanksha, Jayendra, Singh A., Srivastava A.K., 2008. Coagulanolide, a withanolide from Withania coagulans fruits and antihyperglycemic activity. Bioorg. Med. Chem. Lett. 18, 6534-6537.
Maurya, J., Akanksha, J., 2010. Chemistry and pharmacology of Withania coagulans: An Ayurvedic remedy. Pharma Pharmacol. 62, 153-160.
 Maurya, R., Akanksha, Jayendra, Singh, A.B., Srivastava, A.K., 2008. Coagulanoide, a withanolide from Withania coagulans fruits and antihyperglycemic activity. Bioorg. Med. Chem. Lett. 18(24), 6534-6537.
Mohammadhosseini, M., Venditti, A., Sarker, S.D., Nahar, L., Akbarzadeh, A., 2019. The genus Ferula: Ethnobotany, phytochemistry and bioactivities-A review. Ind. Crops Prod. 129, 350-394.
Mohan, R., Hammers, H. J., Bargagna-Mohan, P., Zhan, X.H., Herbstritt, C.J., Ruiz, A., Zhang, L., Hanson, A.D., Conner, B.P., Rougas, J., Pribluda, V.S., 2004. Withaferin A is a potent inhibitor of angiogenesis.Angiogenesis 7(2), 115-22.
Nadkarni, K.M., 2002. Indian Materia Medica, Revised and enlarged by Nadkarni A.K., Popular Prakashan Pvt. Ltd. Bombay-34, Vol. 1, p. 1291.
Nur-e-Alam M., Yousaf M., Qureshi S., Baig I., Nasim S., Atta-ur-Rahman, Choudhary M.I., 2003. A novel dimeric podophyllotoxin-type lignan and a new withanolide from Withania coagulans. Helv. Chim. Acta 86(3), 607-614.
Quattrocchi, U., 2012. CRC World Dictionary of Medicinal and Poisonous Plants: Common Names, scientific names, eponyms, synonyms, and etymology. CRC Press, Boca Raton, Florida. p. 3949.
Rathore, M.S., Mastan, S.G., Yadav, P., Bhatt, V.D., Shekhawat, N.S., Chikara, J., 2016. Shoot regeneration from leaf explants of Withania coagulans (Stocks) Dunal and genetic stability evaluation of regenerates with RAPD and ISSR markers. S. Afr. J. Botany.  102, 12-17.
Stuffness, M., Douros, J., 1982. Current status of the NCI plant and animal product program. J. Nat. Prod. 45, 1-14.
 Sun, C., Qiu, C., Zhao, F.,  Kang, N,  Chen, L.-X,  Qiu, F. 2017. Physalins V-IX, 16,24-cyclo-13,14-seco withanolides from Physalis angulata and their antiproliferative and anti-inflammatory activities. Sci. Rep. 7,4057. doi:10.1038/s41598-017-03849-9.
Venditti, A., Frezza, C., Serafini, I., Pulone, S., Scardelletti, G., Sciubba, F., Bianco, A., Serafini, M., 2018. Chemical profiling of the fruits of Styrax officinalis L. from Monti Lucretili (Latium region, Central Italy): Chemotaxonomy and nutraceutical potential. Trends Phytochem. Res. 2(1), 1-12.
WHO, 1993. Regional office for Western Pacific Research guidelines for evaluating safety and efficacy of herbal medicines, Manila, p.94.
Yang B.-Y., Guo R., Li T., Liu Y., Wang C.-F., Shu Z.-P., Wang Z.-B., Zhang J., Xia Y.- G., Jiang H., Wang Q.-H., Kuang H.-X, 2014. Five withanolides from the leaves of Datura metel L. and their inhibitory effects on nitric oxide production. Molecules 19, 4548-4559.