Document Type : Review article

Author

OncoWitan, Lille (Wasquehal), 59290, France

10.30495/tpr.2021.1928614.1205

Abstract

The plant Machilus thunbergii Siebold & Zucc., known as Makko tree, is distributed in many countries of south Asia: China, Taiwan, Japan, South Korea, Philippines, Vietnam, Cambodia, Laos. The bark of the tree is used for the preparation of incense powder, and the wood is exploited locally. A few applications of the plant in Chinese and Korean traditional medicines have been mentioned, for the treatment of headache, apoplexy, and dyspepsia. This review provides a survey of the main butanolides and neolignans isolated from the bark and leaves of Makko tree, with a focus on anti-inflammatory, antioxidant, and anticancer compounds. The molecular targets of selected butanolides such as litsenolides A2 and obtusilactone B, and different lignans, including machilins A-I, are discussed. The targeting of lactate dehydrogenase A (LDHA) by machilin A is at the origin of anticancer properties. The review highlights the structural diversity and properties of the machilins.

Graphical Abstract

Anticancer butanolides and lignans from the Makko tree, Machilus thunbergii Siebold & Zucc. (Lauraceae). A review

Keywords

Ahn, B.T., Lee, S., Lee, S.B., Lee, E.S., Kim, J.G., Bok, S.H., Jeong, T.S., 2001. Low-density lipoprotein-antioxidant constituents of Saururus chinensis. J. Nat. Prod. 64,1562-1564.
Arra, M., Swarnkar, G., Ke, K., Otero, J.E., Ying, J., Duan, X., Maruyama, T., Rai, M.F., O'Keefe, R.J., Mbalaviele, G., Shen, J., Abu-Amer, Y., 2020. LDHA-mediated ROS generation in chondrocytes is a potential therapeutic target for osteoarthritis. Nat. Commun. 11, 3427-3442.
Arteaga, S., Andrade-Cetto, A., Cárdenas, R., 2005. Larrea tridentata (Creosote bush), an abundant plant of Mexican and US-American deserts and its metabolite nordihydroguaiaretic acid. J. Ethnopharmacol. 98, 231-239.
Bae, J.Y., Kim, S.R., Lee, C.H., Park, J.H., 2010. Pharmacognostical studies on the folk medicine ‘HooBakIp’. Korean J. Pharmacogn. 41, 9-13.
Bernal, F.A., Suárez, L.E.C., 2009. Chemical constituents from Iryanthera ulei Warb. Biochem. Systemat. Ecol. 37, 772-775.
Billinsky, J.L., Krol, E.S., Nordihydroguaiaretic acid autoxidation produces a schisandrin-like dibenzocyclooctadiene lignan. J. Nat. Prod. 71, 1612-1615.
Bu, P.B., Li, Y.R., Jiang, M., Wang, X.L., Wang, F., Lin, S., Zhu, C.G., Shi, J.G., 2013. [Lignans from Machilus robusta]. Zhongguo. Zhong. Yao. Za. Zhi. 38, 1740-1746.
Burger, M., Schmitt-Koopmann, C., Leroux, J.C., 2020. DNA unchained: two assays to discover and study inhibitors of the DNA clustering function of barrier-to-autointegration factor. Sci. Rep. 10, 12301-123014.
Cao, G.Y., Xu, W., Yang, X.W., Gonzalez, F.J., Li, F., 2015. New neolignans from the seeds of Myristica fragrans that inhibit nitric oxide production. Food Chem. 173, 231-237.
Cardozo Pinto de Arruda, C., de Jesus Hardoim, D., Silva Rizk, Y., da Silva Freitas de Souza, C., Zaverucha do Valle, T., Bento Carvalho, D., Nosomi Taniwaki, N., de Morais Baroni, A.C., da Silva Calabrese, K., 2019. A triazole hybrid of neolignans as a potential antileishmanial agent by triggering mitochondrial dysfunction. Molecules 25, 37.
Chaimanee, S., Pohmakotr, M., Kuhakarn, C., Reutrakul, V., Soorukram, D., 2017. Asymmetric synthesis of ent-fragransin C1. Org. Biomol. Chem. 15, 3985-3994.
Chang, H.S., Chen, I.S., 2016. Chemical constituents and bioactivity of Formosan lauraceous plants. J. Food Drug Anal. 24, 247-263.
Chang, S.Y., Cheng, M.J., Peng, C.F., Chang, H.S., Chen, I.S., 2008. Antimycobacterial butanolides from the root of Lindera akoensis. Chem. Biodivers. 5, 2690-2698.
Chen, Y., Li, N., Zhu, Y., Zhang, C., Jiang, X., Yang, J., Xu, Z., Qiu, S.X., Huang, R., 2013. Dibenzylbutane lignans from the stems of Schisandra bicolor. Nat. Prod. Commun. 8, 1121-1122.
Cheng, W., Zhu, C., Xu, W., Fan, X., Yang, Y., Li, Y., Chen, X., Wang, W., Shi J., 2009. Chemical constituents of the bark of Machilus wangchiana and their biological activities. J. Nat. Prod. 72, 2145-2152.
Choi, K., Rho, H.S., 2017. Synthesis of methylated and acetylated derivatives of meso-dihydroguaretic acid and study of their inhibitory activities on LPS derived nitric oxide (NO) production. J. Soc. Cosmet. Sci. Korea 43, 195-200.
Choi, M.S., Jeong, H.J., Kang, T.H., Shin, H.M., Oh, S.T., Choi, Y., Jeon, S., 2015. Meso-dihydroguaiaretic acid induces apoptosis and inhibits cell migration via p38 activation and EGFR/Src/intergrin beta3 downregulation in breast cancer cells. Life Sci. 141, 81-89.
Choi, S., Paul, N.C., Lee, K.H., Kim, H.J., Sang, H., 2021. Morphology, molecular phylogeny, and pathogenicity of Neofusicoccum parvum, associated with leaf spot disease of a new host, the Japanese bay tree (Machilus thunbergii). Forests 12, 440-449.
Chung, B.S., Shin, M.G., 1990. Dictionary of Korean folk medicine. Young Lim Sa, Seoul, p. 458.
Chung, T.W., Kim, E.Y., Hsan, C.W., Park, S.Y., Jeong, M.S., Yoon, D., Choi, H.J., Jin, L., Park, M.J., Kwon, Y.J., Lee, H., Kim, K.J., Park, K.H., Kim, S., Jang, S.B., Ha, K.T., 2019. Machilin A inhibits tumor growth and macrophage M2 polarization through the reduction of lactic acid. Cancers (Basel). 11, 963-983.
Clemente-Soto, A.F., Balderas-Rentería, I., Rivera, G., Segura-Cabrera, A., Garza-González, E., del Rayo Camacho-Corona, M., 2014. Potential mechanism of action of meso-dihydroguaiaretic acid on Mycobacterium tuberculosis H37Rv. Molecules 19, 20170-20182.
Costa, E.C., Cassamale, T.B., Carvalho, D.B., Bosquiroli, L.S., Ojeda, M., Ximenes, T.V., Matos, M.F., Kadri, M.C., Baroni, A.C., Arruda, C.C., 2016. Antileishmanial activity and structure-activity relationship of triazolic compounds derived from the neolignans grandisin, veraguensin, and machilin G. Molecules 21, 802-812.
Cui, Q., Du, R., Liu, M., Rong, L., 2020. Lignans and their derivatives from plants as antivirals. Molecules 25, 183-199.
da Silva Filho, A.A., Costa, E.S., Cunha, W.R., Silva, M.L., Nanayakkara, N.P., Bastos, J.K., 2008. In vitro antileishmanial and antimalarial activities of tetrahydrofuran lignans isolated from Nectandra megapotamica (Lauraceae). Phytother. Res. 22, 1307-1310.
das Neves, A.R., Trefzger, O.S., Barbosa, N.V., Honorato, A.M., Carvalho, D.B., Moslaves, I.S., Kadri, M.C.T., Yoshida, N.C., Kato, M.J., Arruda, C.C.P., Baroni, A.C.M., 2019. Effect of isoxazole derivatives of tetrahydrofuran neolignans on intracellular amastigotes of Leishmania (Leishmania) amazonensis: A structure-activity relationship comparative study with triazole-neolignan-based compounds. Chem. Biol. Drug Des. 94, 2004-2012.
Epstein, E. 1997. Immunotherapy of warts with masoprocol cream. Cutis (New York, NY). 59, 287-289.
Fang, A., Zhang, Q., Fan, H., Zhou, Y., Yao, Y., Zhang, Y., Huang, X., 2017. Discovery of human lactate dehydrogenase A (LDHA) inhibitors as anticancer agents to inhibit the proliferation of MG-63 osteosarcoma cells. Medchemcomm. 8, 1720-1726.
Feng, Y., Xiong, Y., Qiao, T., Li, X., Jia, L., Han, Y., 2018. Lactate dehydrogenase A: A key player in carcinogenesis and potential target in cancer therapy. Cancer Med. 7, 6124-6136.
Gezginci, M.H., Timmermann, B.N., 2001. A short synthetic route to nordihydroguaiaretic acid (NDGA) and its stereoisomer using Ti-induced carbonyl-coupling reaction. Tetrahedron Lett. 42, 6083-6085.
Halfmann, C.T., Roux, K.J., 2021. Barrier-to-autointegration factor: a first responder for repair of nuclear ruptures. Cell Cycle. 20, 647-660.
Ham, Y.M., Cho, S.H., Song, S.M., Yoon, S.A., Lee, Y.B., Kim, C.S., Kwon, S.H., Jeon, M.S., Yoon, W.J., Kim, K.N., 2017. Litsenolide A2: The major anti-inflammatory activity compound in Litsea japonica fruit. J. Function. Food 39, 168-174.
Ham, Y.M., Ko, Y.J., Song, S.M., Kim, K.N., Yun, J.H., Cho, J.H., Ahn, G., Yoon, W.J., 2015. Anti-inflammatory effect of litsenolide B2 isolated from Litsea japonica fruit via suppressing NF-κB and MAPK pathways in LPS-induced RAW264.7 cells. J. Funct. Food. 13, 80-88.
Han, M.R., Lee, J.S., 2010. Dyeability of silk fabrics with Machilus thunbergia cortex. J. Korean Soc. Cloth. Text. 34, 864-872.
Hattori, M., Hada, S., Kawata, Y., Tezuka, Y., Kikuchi, T., Namba, T., 1987. New 2,5-bis-aryl-3,4-dimethyltetrahydrofuran lignans from the aril of Myristica fragrans. Chem. Pharm. Bull. 35, 3315-3322
Hazra, S., Hajra, S., 2013. A diastereoselective route to 2,5-diaryl-3,4-disubstituted tetrahydrofuran lignans: protection free synthesis of (+)-galbelgin and (+)-galbacin. RSC Adv. 3, 22834-22836
He, Y., Fan, Q., Cai, T., Huang, W., Xie, X., Wen, Y., Shi, Z., 2018. Molecular mechanisms of the action of arctigenin in cancer. Biomed. Pharmacother. 108, 403-407.
Hearon, W.M., MacGregor, W.S., 1995. The naturally occurring lignans. Chem. Rev. 55, 957-1068.
Hernández-Damián, J., Andérica-Romero, A.C., Pedraza-Chaverri, J., 2014. Paradoxical cellular effects and biological role of the multifaceted compound nordihydroguaiaretic acid. Arch. Pharm. (Weinheim). 347, 685-697.
Hirano, T., Gotoh, M., Oka, K., 1994. Natural flavonoids and lignans are potent cytostatic agents against human leukemic HL-60 cells. Life Sci. 55, 1061-1069.
Hirano, T., Wakasugi, A., Oohara, M., Oka, K., Sashida, Y., 1991. Suppression of mitogen-induced proliferation of human peripheral blood lymphocytes by plant lignans. Planta Med. 57, 331-334.
Houdkova, M., Urbanova, K., Doskocil, I., Soon, J.W., Foliga, T., Novy, P., Kokoska, L., 2021. Anti-staphylococcal activity, cytotoxicity, and chemical composition of hexane extracts from arils and seeds of two Samoan Myristica spp. South Afric. J. Bot. 139, 1-5.
Hur, J., Jang, J., Sim, J., 2021. A review of the pharmacological activities and recent synthetic advances of gamma-butyrolactones. Int. J. Mol. Sci. 22, 2769-2816.
Jeong, H.J., Koo, B.S., Kang, T.H., Shin, H.M., Jung, S., Jeon, S., 2015. Inhibitory effects of Saururus chinensis and its components on stomach cancer cells. Phytomedicine 22, 256-261.
Kim, H.S., Park, J.C., 1993. Analysis of flavonoid components from Machilus thunbergii leaves. Korean J. Bot. 36, 297-300.
Kim, K.W., 2012. Leaf surface characterization of the Tabu-No-Ki tree Machilus thunbergii using electron microscopy and white light scanning interferometry. J. Electron. Microsc (Tokyo) 61, 433-440.
Kim, N.Y., Ryu, J.H., 2003. Butanolides from Machilus thunbergii and their inhibitory activity on nitric oxide synthesis in activated macrophages. Phytother. Res. 17, 372-375.
Kim, W., Lyu, H.N., Kwon, H.S., Kim, Y.S., Lee, K.H., Kim, D.Y., Chakraborty, G., Choi, K.Y., Yoon, H.S., Kim, K.T., 2013. Obtusilactone B from Machilus Thunbergii targets barrier-to-autointegration factor to treat cancer. Mol. Pharmacol. 83, 367-376.
Konishi, T., Konoshima, T., Daikonya, A., Kitanaka, S., 2005. Neolignans from Piper futokadsura and their inhibition of nitric oxide production. Chem. Pharm. Bull. (Tokyo). 53, 121-124.
Korea National Arboretum. 2015. English names for Korean native plants. Chang, K.S., Kungnip, S. (Eds). Korea National Arboretum, 778 pp. (p. 532). (ISBN: 9788997450985).
Kulp-Shorten, C., Konnikov, N., Callen, J., 1993. Comparative evaluation of the efficacy and safety of masoprocol and 5-fluorouracil cream for the treatment of multiple actinic keratoses of the head and neck. J. Geriatr. DermatoI. 1, 161-168.
Kunzmann, M.H., Staub, I., Böttcher, T., Sieber, S.A., 2011. Protein reactivity of natural product-derived gamma-butyrolactones. Biochemistry 50, 910-916.
Lambert, J., Dorr, R., Timmerman, B., 2004. Nordihydroguaiaretic acid: a review of its numerous and varied biological activities. Pharm. Biol. 42, 149-158.
Lee, J.S., Kim, J., Yu, Y.U., Kim, Y.C., 2004a. Inhibition of phospholipase Cgamma1 and cancer cell proliferation by lignans and flavans from Machilus thunbergii. Arch. Pharm. Res. 27, 1043-1047.
Lee, M.K., Yang, H., Ma, C.J., Kim, Y.C., 2007. Stimulatory activity of lignans from Machilus thunbergii on osteoblast differentiation. Biol. Pharm. Bull. 30, 814-817.
Lee, S.U., Shim, K.S., Ryu, S.Y., Min, Y.K., Kim, S.H., 2009. Machilin A isolated from Myristica fragrans stimulates osteoblast differentiation. Planta Med. 75, 152-157.
Lee, W.S., Baek, Y.I., Kim, J.R., Cho, K., Sok, D.E., Jeong, T.S., 2004b. Antioxidant activities of a new lignan and a neolignan from Saururus chinensis. Bioorg. Med. Chem. Lett. 14, 5623-5628.
Lepoittevin, J.P., Berl, V., Giménez-Arnau, E., 2009. Alpha-methylene-gamma-butyrolactones: versatile skin bioactive natural products. Chem. Rec. 9, 258-270.
Li, G., Lee, C.S., Woo, M.H., Lee, S.H., Chang, H.W., Son, J.K., 2004. Lignans from the bark of Machilus thunbergii and their DNA topoisomerases I and II inhibition and cytotoxicity. Biol. Pharm. Bull. 27, 1147-1150.
Li, H.M., Guo, H.L., Xu, C., Liu, L., Hu, S.Y., Hu, Z.H., Jiang, H.H., He, Y.M., Li, Y.J., Ke, J., Long, X., 2020. Inhibition of glycolysis by targeting lactate dehydrogenase A facilitates hyaluronan synthase 2 synthesis in synovial fibroblasts of temporomandibular joint osteoarthritis. Bone 141, 115584-115593.
Li, L., Shi, H., Zhang, S., Hu, T., Wang, J., Zhang, C., Xu, Z., 2018. First report of Lasiodiplodia gilanensis causing twig and leaf blight on Machilus thunbergii in Zhejiang province of China. Plant Dis. 102, 2029-2029.
L,i S.L., Wu, H.C., Hwang, T.L., Lin, C.H., Yang, S.S., Chang, H.S., 2020. Phytochemical investigation and anti-Inflammatory activity of the leaves of Machilus japonica var. Kusanoi. Molecules 25, 4149-4162.
Li Y, Xie S, Ying J, Wei W, Gao K., 2018. Chemical structures of lignans and neolignans isolated from Lauraceae. Molecules 23, 3164-3181.
Lin, Y.H., Chen, C.Y., Chou, L.Y., Chen, C.H., Kang, L., Wang, C.Z., 2017. Enhancement of bone marrow-derived mesenchymal stem cell osteogenesis and new bone formation in rats by obtusilactone A. Int. J. Mol. Sci. 18, 2422-2434.
Liu, J., Sun, H.G., Jiang, J.M., Shao, W.H., Luan, Q.F., 2013. Genetic diversity of natural populations of Machilus thunbergii, an endangered tree species in eastern China, determined with ISSR analysis. Genet. Mol. Res. 12, 3689-3697.
Lü, J.M., Nurko, J., Weakley, S.M., Jiang, J., Kougias, P., Lin, P.H., Yao, Q., Chen, C., 2010. Molecular mechanisms and clinical applications of nordihydroguaiaretic acid (NDGA) and its derivatives: an update. Med. Sci. Monit. 16, 93-100.
Lu, Y., Xue, Y., Chen, S., Zhu, H., Zhang, J., Li, X.N., Wang, J., Liu, J., Qi, C., Du, G., Zhang, Y., 2016. Antioxidant lignans and neolignans from Acorus tatarinowii. Sci. Rep. 6, 22909-22918.
Ma, C.J., Kim, S.R., Kim, J., Kim, Y.C., 2005. Meso-dihydroguaiaretic acid and licarin A of Machilus thunbergii protect against glutamate-induced toxicity in primary cultures of a rat cortical cells. Br. J. Pharmacol. 146, 752-759.
Ma, C.J., Kim, Y.C., Sung, S.H., 2009. Compounds with neuroprotective activity from the medicinal plant Machilus thunbergii. J. Enzyme Inhib. Med. Chem. 24, 1117-1121.
Ma, C.J., Lee, M.K., Kim, Y.C., 2006. meso-Dihydroguaiaretic acid attenuates the neurotoxic effect of staurosporine in primary rat cortical cultures. Neuropharmacology 50, 733-740.
Ma, C.J., Sung, S.H., Kim, Y.C., 2004. Neuroprotective lignans from the bark of Machilus thunbergii. Planta Med. 70, 79-80.
Mala John, G.S., Takeuchi, S., Venkatraman, G., Rayala, S.K., 2020. Nordihydroguaiaretic acid in therapeutics: beneficial to toxicity profiles and the search for its analogs. Curr. Cancer Drug Targets 20, 86-103.
Manda, G., Rojo, A.I., Martínez-Klimova, E., Pedraza-Chaverri, J., Cuadrado, A., 2020. Nordihydroguaiaretic acid: from herbal medicine to clinical development for cancer and chronic diseases. Front. Pharmacol. 11, 151-171.
Mase, K., Tagane, S., Chang, P., Yahara, T., 2020. A taxonomic study of Machilus (Lauraceae) in Cambodia based on DNA barcodes and morphological observations. Acta Phytotax. Geobot. 71, 79-101.
Mesa-Siverio, D., Machín, R.P., Estévez-Braun, A., Ravelo, A.G., Lock, O., 2008. Structure and estrogenic activity of new lignans from Iryanthera lancifolia. Bioorg. Med. Chem. 16, 3387-3394.
Moon, H.I., Chung, J.H., 2005. Meso-dihydroguaiaretic acid from Machilus thunbergii SIEB et ZUCC., and its effects on the expression of matrix metalloproteinase-2, 9 cause by ultraviolet irradiated cultured human keratinocyte cells (HaCaT). Biol. Pharm. Bull. 28, 2176-2179.
Nii, H., Furukawa, K., Iwakiri, M., Kubota T., 1981a. Constituents of the essential oil from Machilus thunbergii Sieb et Zucc fruit (Part II). J. Agric. Chem. Soc. Japan 55, 1179-1186.
Nii, H., Furukawa, K., Iwakiri, M., Kubota T., 1981b. The constituents of the essential oil from Machilus thunbergii Sieb et Zucc fruit. J. Agric. Chem. Soc. Japan 55, 37-41.
Nii, H., Furukawa, K., Iwakiri, M., Kubota, T., 1983. Constituents of the essential oil from Machilus thunbergii Sieb et Zucc fruit (Part III). J. Agric. Chem. Soc. Japan 57, 323-327.
Nishiwaki, H., Nakazaki, S., Akiyama, K., Yamauchi, S., 2017. Structure-antifungal activity relationship of fluorinated dihydroguaiaretic acid derivatives and preventive activity against Alternaria alternata Japanese pear Ppathotype. J. Agric. Food Chem. 65, 6701-6707.
Niwa, M., Iguchi, M., Yamamura, S., 1975a. The isolation and structure of obtusilactone. Tetrahedron Lett. 16, 1539-1542.
Niwa, M., Iguchi, M., Yamamura, S., 1975c. The structures of C17-obtusilactone dimer and two C21-obtusilactones. Tetrahedron Lett. 49, 4395-4398.
Niwa, M., Iguchi, M., Yamamura, S., 1975b. Three new obtusilactones from Lindera obtusiloba Blume. Chem. Lett. 1975, 655-658.
Noshita, T., Funayama, S., Hirakawa, T., Kidachi, Y., Ryoyama, K., 2008. Machilin G and four neolignans from young fruits of Magnolia denudata show various degrees of inhibitory activity on nitric oxide (NO) production. Biosci. Biotechnol. Biochem. 72, 2775-2778.
Olsen, EA, Abernethy, ML, Kulp-Shorten, C, Callen, JP, Glazer, SD, Huntley, A, McCray, M, Monroe, AB, Tschen, E, Wolf, JE Jr. 1991. A double-blind, vehicle-controlled study evaluating masoprocol cream in the treatment of actinic keratoses on the head and neck. J. Am. Acad. Dermatol. 24, 738-743.
Park, B.Y., Min, B.S., Kwon, O.K., Oh, S.R., Ahn, K.S., Kim, T.J., Kim, D.Y., Bae, K., Lee, H.K., 2004. Increase of caspase-3 activity by lignans from Machilus thunbergii in HL-60 cells. Biol. Pharm. Bull. 27, 1305-1307.
Park, E.Y., Shin, S.M., Ma, C.J., Kim, Y.C., Kim, S.G., 2005. meso-Dihydroguaiaretic acid from Machilus thunbergii down-regulates TGF-beta1 gene expression in activated hepatic stellate cells via inhibition of AP-1 activity. Planta Med. 71, 393-398.
Park, J.C., Kim, B.W., Young, H.S., 1990b. Further study on the flavonoids from the leaves of Machilus thunbergia in Korea. Korean J. Pharmacogn. 21, 197-200.
Park, J.C., Ko, Y.C., Young, H.S., Park, H.J., Suh, S.S., 1991. Phytochemical study on the leaves of Machilus thunbergia. Yakkak. Hoeji. 35, 142-145.
Park, J.C., Young, H.S., Park, H.J., Park, S.C., 1990a. Flavonol Glycosides from the Leaves of Machilus thunbergia. Korean J. Pharmacogn. 21, 60-63.
Park, J.H., Namba, T., 1994. Pharmacognostical Studies on the ‘Hoo Bak’. Korean J. Pharmacogn. 25, 188-193.
Park, S., Lee, D.K., Yang, C.H., 1998. Inhibition of fos-jun-DNA complex formation by dihydroguaiaretic acid and in vitro cytotoxic effects on cancer cells. Cancer Lett. 127, 23-28.
Phan, M.G., Phan, T.S., Matsunami, K., Otsuka, H., 2006. New neolignans and lignans from Vietnamese medicinal plant Machilus odoratissima NEES. Chem. Pharm. Bull. (Tokyo) 54, 380-383.
Ponci, V., Figueiredo, C.R., Massaoka, M.H., de Farias, C.F., Matsuo, A.L., Sartorelli, P., Lago, J.H., 2015. Neolignans from Nectandra megapotamica (Lauraceae) display in vitro cytotoxic activity and induce apoptosis in leukemia Ccells. Molecules 20, 12757-12768.
Prasad, A.K., Tyagi, O.D., Wengel, J., Boll, P.M., Olsen, C.E., Sharma, N.K., Bisht, K.S., Gupta, S., Parmar, V.S., 1994. Lignans and neolignans from stems and fruits of Piper wightii. Tetrahedron 50, 2231-2240.
Quintana, J., Estévez, F., 2018. Recent advances on cytotoxic sesquiterpene lactones. Curr. Pharm. Des. 24, 4355-4361.
Ren, Q., Wu, D., Wu, C., Wang, Z., Jiao, J., Jiang, B., Zhu, J., Huang, Y., Li, T., Yuan, W., 2020. Modeling the potential distribution of Machilus thunbergii under the climate change patterns in China. Open J. Forest. 10, 217-231.
Reyes-Melo, K., García, A., Romo-Mancillas, A., Garza-González, E., Rivas-Galindo, V.M., Miranda, L.D., Vargas-Villarreal, J., Favela-Hernández, J.M.J., Camacho-Corona, M.D.R., 2017. meso-Dihydroguaiaretic acid derivatives with antibacterial and antimycobacterial activity. Bioorg. Med. Chem. 25, 5247-5259.
Rye, C.E., Barker, D., 2013. Asymmetric synthesis and anti-protozoal activity of the 8,4'-oxyneolignans virolin, surinamensin and analogues. Eur. J. Med. Chem. 60, 240-248.
Ryu, J.H., Ahn, H., Kim, J.Y., Kim, Y.K., 2003. Inhibitory activity of plant extracts on nitric oxide synthesis in LPS-activated macrophages. Phytother. Res. 17, 485-489.
Sadhu, S.K., Okuyama, E., Fujimoto, H., Ishibashi, M., 2003. Separation of Leucas aspera, a medicinal plant of Bangladesh, guided by prostaglandin inhibitory and antioxidant activities. Chem. Pharm. Bull. (Tokyo) 51, 595-598.
Schröter, G., Lichtenstadt, L., Irineu, D., 1918. Über die konstitution der guajacharz-substanzen. (I). Ber. Dtsch. Chem. Ges. 51, 1587-1613.
Schühly, W., Gröblacher, B., Neyer, J., Fabian, W.M., Fronczek, F.R., Kunert O., 2010. Dibenzocyclooctadiene lignans from Magnolia and Talauma (Magnoliaceae): their absolute configuration ascertained by circular dichroism and X-ray crystallography and re-evaluation of previously published pyramidatin structures. Phytochemistry 71, 1787-1795.
Shinomura, H., Sashida, Y., Oohara, M., 1987. Lignans from M. thunbergii. Phytochemistry 26, 1513-1515.
Shinomura, H., Sashida, Y., Oohara, M., 1988. Lignans from M. thunbergii. Phytochemistry 27, 634-636.
Son, J.K., Lee, S.H., Chang, H.W., 2003. Skin whitening cosmetic composition comprising the extract of Machilus thunberghii and the compounds isolated therefrom. AU2003251200 (WO2004096171A1), publication date 13 Aug 2003.
Son, J.K., Lee, S.H., Nagarapu, L., Jah, Y., 2005. A simple synthesis of nordihydroguaiaretic acid and its analogues. Bull. Korean Chem. Soc. 26, 1117-1120.
Song, J.W., Seo, C.S., Cho, E.S., Kim, T.I., Won, Y.S., Kwon, H.J., Son, J.K., Son, H.Y., 2016. meso-Dihydroguaiaretic acid attenuates airway inflammation and mucus hypersecretion in an ovalbumin-induced murine model of asthma. Int. Immunopharmacol. 31, 239-247.
Song, Y., Dong, W., Liu, B., Xu, C., Yao, X., Gao, J., Corlett, R.T., 2015. Comparative analysis of complete chloroplast genome sequences of two tropical trees Machilus yunnanensis and Machilus balansae in the family Lauraceae. Front. Plant Sci. 6, 662-669.
Su, X.M., Liang, Q., Zhang, X.M., Wang, M., Wang, J., Wen, Z.W., Liu, F., Nie, T., Xu, J., Liu, R., Xu, W.H., 2021. Phytochemical and chemotaxonomic study on Piper pleiocarpum Chang ex Tseng. Biochem. System. Ecol. 94, 104187-104190.
Su, Y.C., Hsu, K.P., Li, S.C., Ho, C.L., 2015. Composition, in vitro cytotoxicity, and anti-mildew activities of the leaf essential oil of Machilus thunbergii from Taiwan. Nat. Prod. Commun. 10, 2013-2016.
Sung, S.H., Huh, M.S., Kim, Y.C., 2001. New tetrahydrofuran-type sesquilignans of Saururus chinensis root. Chem. Pharm. Bull (Tokyo). 49, 1192-1194.
Takeda, K., Sakurawi, K., Ishii, H., 1972. Components of the Lauraceae family. I. New lactonic compounds from Litsea japonica. Tetrahedron 28, 3757-3766.
Tatiya, A.U., Beldar, V.G., Surana, S.J., 2017. Pharmacognostic, phytochemical and pharmacological review on Machilus macrantha Nees. Eur. J. Pharm. Med. Res. 4, 174-178.
Teponno, R.B., Kusari, S., Spiteller, M., 2016. Recent advances in research on lignans and neolignans. Nat. Prod. Rep. 33, 1044-1092.
Tomita, M., Kozuka, M., 1964. [On the alkaloids of Machilus thunbergii Sieb. et Zucc]. Yakugaku. Zasshi. 84, 362-365.
Toyama, N., Ogawa, K., 1975. Sugar production from agricultural woody wastes by saccharification with Trichoderma viride cellulase. Biotechnol. Bioeng. Symp. 5, 225-244.
Trefzger, O.S., das Neves, A.R., Barbosa, N.V., Carvalho, D.B., Pereira, I.C., Perdomo, R.T., Matos, M.F.C., Yoshida, N.C., Kato, M.J., de Albuquerque, S., Arruda, C.C.P., Baroni, A.C.M., 2019. Design, synthesis and antitrypanosomatid activities of 3,5-diaryl-isoxazole analogues based on neolignans veraguensin, grandisin and machilin G. Chem. Biol. Drug Des. 93, 313-324.
Uhm, Y.K., Jung, K.H., Bu, H.J., Jung, M.Y., Lee, M.H., Lee, S., Lee, S., Kim, H.K., Yim, S.V., 2010. Effects of Machilus thunbergii Sieb et Zucc on UV-induced photoaging in hairless mice. Phytother. Res. 24, 1339-1346.
Uk, J.H., Ho, L.S., Geun, S.J., 2003. Skin whitening cosmetic composition which contains extract of Machilus thunberghii having inhibiting effects on synthesis of melanin. KR20040092781.
Waller, C.W., Gisvold, O., 1945. J. Am. Pharm. Assoc. 34, 78-81.
Wang, F., Zhao, Q., Liu, J., Wang, Z., Kong, D., 2020. Identification of human lactate dehydrogenase A inhibitors with anti-osteosarcoma activity through cell-based phenotypic screening. Bioorg. Med. Chem. Lett. 30, 126909-126913.
Wang, H.M., Cheng, K.C., Lin, C.J., Hsu, S.W., Fang, W.C., Hsu, T.F., Chiu, C.C., Chang, H.W., Hsu, C.H., Lee, A.Y., 2010. Obtusilactone A and (-)-sesamin induce apoptosis in human lung cancer cells by inhibiting mitochondrial Lon protease and activating DNA damage checkpoints. Cancer Sci. 101, 2612-2620.
Watanabe, S., Kaneko, Y., Maesako, Y., Noma, N., 2014. Range expansion and lineage admixture of the Japanese evergreen tree Machilus thunbergii in central Japan. J. Plant Res. 127, 709-720.
Watanabe, S., Noma, N., Nishida, T., 2016. Flowering phenology and mating success of the heterodichogamous tree Machilus thunbergii Sieb. Et Zucc (Lauraceae). Plant Species Biol. 31, 29-37.
Watanabe, S., Takakura, K.I., Kaneko, Y., Noma, N., Nishida, T., 2018. Skewed male reproductive success and pollen transfer in a small fragmented population of the heterodichogamous tree Machilus thunbergii. J. Plant Res. 131, 623-631.
Wei, F.N., van der Werff, H., 2008. Machilus Rumphius ex Nees. Flora of China 7, 201-224.
Woodford, M.R., Chen, V.Z., Backe, S.J., Bratslavsky, G., Mollapour, M., 2020. Structural and functional regulation of lactate dehydrogenase-A in cancer. Future Med. Chem. 12, 439-455.
Wu, S.J., Len, W.B., Huang, C.Y., Liou, C.J., Huang, W.C., Lin, C.F., 2015. Machilus thunbergii extract inhibits inflammatory response in lipopolysaccharide-induced RAW264.7 murine macrophages via suppression of NF-κB and p38 MAPK activation. Turk. J. Biol. 39, 657-665.
Wu, S., Hwang, C., Lin, T., Chung, J., Cheng, Y., Hwang, S., 2006. Contrasting Phylogeographical Patterns of Two Closely Related Species, Machilus thunbergii and Machilus kusanoi (Lauraceae), in Taiwan. J. Biogeography. 33, 936-947.
Xia, Y., Wang, W., 2010. Asymmetric synthesis of machilin C and its analogue. Chem. Pap. 64, 630-636.
Xia, Y., Zhang, Y., Wang, W., Ding, Y., He, R., 2010. Synthesis and bioactivity of erythro-nordihydroguaiaretic acid, threo-(–)-saururenin and their analogues. J. Serb. Chem. Soc. 75, 1325-1335.
Xia, Y.M., Wang, Q., Din, Y.N., Yang, F.K., Cao, X.P., 2008. Synthesis of meso-nordihydroguaiaretic acid and machilin A. Chinese J. Org. Chem. 28, 1040-1043.
Xie, L.W., 2005. Clonal propagation of Machilus thunbergii. Pract. For. Tech. 9, 45-46.
Xu, J.J., Tan, N.H., 2012. New lignans from Jatropha curcas linn. Z. Naturforsch. B 67, 176-180.
Yahara, T., Tagane, S., Mase, K., Chang, P., Toyama, H., 2016. Flora of Bokor national park V: two new species of Machilus (Lauraceae), M. bokorensis and M. brevipaniculata. PhytoKeys. 65, 35-46.
Yu, Y.U., Kang, S.Y., Park, H.Y., Sung, S.H., Lee, E.J., Kim, S.Y., Kim, Y.C., 2000. Antioxidant lignans from Machilus thunbergii protect CCl4-injured primary cultures of rat hepatocytes. J. Pharm. Pharmacol. 52, 1163-1169.
Yun, J.H., Nakao, K., Park, C.H., Lee, B.Y., 2011. Potential habitats and change prediction of Machilus thunbergii Siebold & Zucc. in Korea by climate change. Kor. J. Env. Ecol. 25, 903-910.
Zhai, H., Inoue, T., Moriyama, M., Esumi, T., Mitsumoto, Y., Fukuyama, Y., 2005. Neuroprotective effects of 2,5-diaryl-3,4-dimethyltetrahydrofuran neolignans. Biol. Pharm. Bull. 28, 289-293.
Zhang, L., Chen, H., Tian, J., Chen, S., 2013. Antioxidant and anti-proliferative activities of five compounds from Schisandra chinensis fruit. Indus Crops Prod. 50, 690-693.
Zhen, X., Choi, H.S., Kim, J.H., Kim, S.L., Liu, R., Yun, B.S., Lee, D.S., 2020. Machilin D, a Lignin derived from Saururus chinensis, suppresses breast cancer stem cells and inhibits NF-kappaB signaling. Biomolecules 10, 245-260.