Antimicrobial activity and toxicity of *Eucalyptus globulus* Labill. essential oil against vaginal microorganisms

Mirjana Bogavac\(^1\), Kristina Tešanović\(^2\), Jovana Marić\(^3\), Mirjana Jovanović\(^4\) and Maja Karaman\(^5\)*

\(^1\)University of Novi Sad, Faculty of Medicine, Clinical Centre of Vojvodina, Department of Obstetrics and Gynecology, Hajduk Veljkova 3, 21000 Novi Sad, Serbia

\(^2\)University of Belgrade, Faculty of Biology, Studentski trg 16, 11000 Belgrade, Serbia

\(^3\)University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg D. Obradovića 2, 21000 Novi Sad, Serbia

\(^4\)Clinical Center of Serbia, Clinic for Gynecology and Obstetrics, Koste Todorovića 26, 11000 Belgrade, Serbia

\(^5\)University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg D. Obradovića 2, 21000 Novi Sad, Serbia

ABSTRACT

The antimicrobial potential of commercial essential oil (EO) of *Eucalyptus globulus* L. was evaluated against six bacterial vaginal isolates (*E. coli* 1 and *E. coli* 2, *S. aureus* 1 and *S. aureus* 2, *P. aeruginosa* and *P. mirabilis*) and two isolates of *Candida* strains (*C. albicans* 1 and *C. albicans* 2). The antimicrobial activity was assessed through double-dilution micro-plate assay to determine the minimum inhibitory (MIC) and minimum bactericidal/fungicidal (MBC/MFC) concentration. In addition, brine shrimp toxicity assay was performed in order to determine acute toxicity of the examined EO. The isolated strains of pathogens have shown strain specificity to the tested EO. Certain pathogens resistance was noticed toward the tested antibiotic, as well. *E. coli* isolates showed resistance to the tested antibiotics but did not show resistance against the *Eucalyptus* EO (*E. coli* 1 MIC/MBC 12.5/12.5 μL/mL; *E. coli* 2 MIC/MBC 25/25 μL/mL). Moreover, the *Eucalyptus* EO showed effectiveness in application against *S. aureus* 2 (MIC/MBC 6.25/6.25 μL/mL) and *C. albicans* 1 strains (MIC/MFC 6.25/6.25 μL/mL). Furthermore, brine shrimp lethality bioassay revealed the *Eucalyptus* oil toxicity at an LC\(_{50}\) value of 2.66 mg/mL. The chemical composition of the separated essential oil was analyzed by gas chromatography combined with mass spectrometry (GC-MS) showing eucalyptol (59.63%), *p*-cymene (15.55%) and DL-limonene (14.90%) as dominant constituents. Although a number of toxicology trials are needed, these results provide scientific support to examination of *Eucalyptus* EO as an antimicrobial agent in alternative treatment of multiresistant human pathogens of vaginal origin.

© 2019 Islamic Azad University, Shahrood Branch Press, All rights reserved.

1. Introduction

Medicinal plants have been known for millennia as a rich source of therapeutic agents for the treatment and prevention of various diseases such as malaria, typhoid fever, schistosomiasis, onchocerciasis, lymphatic filariasis, African trypanosomiasis and dengue (Wansi et al., 2019; Mohammadhosseini et al., 2017). Moreover, these powerful sources of bioactive metabolites, alongside the different practices in terms of preparing and applying herbal remedies that have been developed by certain ethnic groups throughout the centuries, have become the most useful database for the evaluation of new pharmaceuticals (Jarić et al., 2007). The study of ethnobotanical heritage in Balkan region has shown comparatively strong connections between the local community and natural resources of wild-growing medicinal herbs (*Achillea millefolium* L., *Hedera helix* L., *Matricaria chamomilla* L. etc.) that represent a large portion of its floristic richness (Zlatković et al., 2014). Due to the increasing popularity and extensive usage of phytotherapy all over the globe (Sarker and Nahar, 2018a), essential oils, originated from medicinal plants, are becoming more significant not only in pharmacology...
and medicine, but also in economy (Mohammadhosseini et al., 2019, Wansi et al., 2018). For medical purposes, whole components (Frezza et al., 2017) are used in the production of drugs due to a number of positive pharmacological effects involving antioxidant property, prevention of hypertension, inhibition of acetylcholine (Yeom et al., 2015) as well as various antimicrobial effects (Karaman et al., 2017). Moreover, essential oils are commonly consumed as a spice in the food along with cosmetics and perfumery industries due to their color and fragrance (Sarker and Nahar, 2018). Vaginitis and vulvovaginitis cover a group of inflammatory conditions with heterogeneous etiology which cause various problems such as redness, itching, pain, discharge, cervicitis, bleeding mucous membranes of the vagina and could have an impact on outcome of pregnancy (Bogavac et al., 2012). They usually develop as a consequence of bacterial, fungal (particularly Candida albicans and non-albicans species) and protozoal infections (mostly Trichomonas vaginalis) (Pierce and Hart, 1992; Bortz et al., 2013). Therapy of choice includes the administration of antibiotics in combination with a vaginal suppository according to the results of the antibiogram (Bortz et al., 2013). Considering the fact that antimicrobial properties of plants and their secondary metabolites are well-known, vaginal infections could be treated with EOs (Vermani and Garg, 2002; Naeini et al., 2009; Carson and Hammer, 2011). EOs contain monoterpenes, sesquiterpenes and their related alcohols, as active substances, which inhibit transmission of bacteria, especially Staphylococcus sp., Streptococcus sp. and Candida sp. yeasts (Warnke et al., 2009; Carson and Hammer, 2011). The leaves of Eucalyptus globulus L. (Family: Myrtaceae; Genus: Eucalyptus) (Fig. 1) are the principal source of Eucalyptus oil (1.0-2.4%) which has antibacterial effects on pathogenic bacteria in the respiratory tract (Salari et al., 2006). The aim of the current study was to evaluate antimicrobial efficacy of commercial Eucalyptus oil against isolated bacterial and yeast strains of the women suffering from vaginitis and to determine their inhibitory effects and their toxicity, as well.

2. Experimental

2.1. Bacterial and yeasts strains

Six bacterial strains involving E. coli 1, E. coli 2, S. aureus 1, S. aureus 2, P. aeruginosa and P. mirabilis along with two yeasts Candida human isolates (C. albicans 1 and C. albicans 2) were used as test microorganisms. All isolates were obtained from women with symptoms of vaginal infection at regular gynecological checkup examination at the Department of Obstetrics and Gynecology, Clinical Centre of Vojvodina, Faculty of Medicine, University of Novi Sad. This protocol was approved by the Ethical Board of Clinical Centre of Vojvodina.

Fig. 1. Eucalyptus globulus L.

2.2. Essential oil

The commercial Eucalyptus oil (EO) was obtained from the MeiLab Manufacturer, Belgrade, Serbia.

2.3. Antimicrobial assay

Determination of the minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC) of EO was assayed by standard CLSI procedure (Clinical Laboratory Standards Institute, 2008) using 96-well microtiter plate (Spektar, Čačak, Serbia). Microdilution test was performed in Müeller-Hinton broth (MHB, Torlak, Belgrade, Serbia) for bacterial isolates and Malt broth (MB, Torlak, Belgrade, Serbia) for yeasts. Inoculated broth was mixed with double dilutions of the EO and incubated at 37 °C/24 h for bacteria, and 37 °C/48 h for yeasts. Antimicrobial testing was done in triplicates (1.25-50 µL/mL) in comparison to negative (not inoculated with bacteria/yeast) and positive control (not treated with EO). Finally, 100 µL from each microplate well was transferred to the MHA plate for bacteria and MA plate for C. albicans. After incubation at 37 °C overnight, the number of viable microorganisms was determined. MBC represents the reduction of 99.9% or more of the initial inoculum, while the MIC is the lowest concentration of EO that being resulted as a non-visible growth in petri dishes. Streptomycin, ampicillin, tetracycline and cefuroxime (Torlak, Belgrade, Serbia) as well as one antymycotic-nystatin (Hemofarm, Vršac, Serbia) were used in antibiogram test.

2.4. Brine shrimp toxicity assay

Artemia salina bioassay was performed according to Meyer et al. (1992) (1982). Toxicity of EO was calculated by series of double dilutions in five repetitions with a control: 25 µL of 1.0% oil solvent dimethyl sulfoxide (DMSO) and 225 µL ASW with larvae as control. Toxicity was calculated after 24 h by counting dead nauplii under a stereomicroscope (Zeiss, Germany). Results were expressed as LC50 (lethal concentration required to kill 50% of the population of the tested organisms-brine shrimp Artemia salina). Abbott’s equation was applied for calculation of the mortality rate.
according to the following equation (Eqn. 1):

\[
\text{Mortality (\%)} = \left(\frac{n_{\text{test}} - n_{\text{control}}}{n_{\text{control}}} \right) \times 100 \quad (\text{Eqn. 1})
\]

Where \(n_{\text{test}} \) and \(n_{\text{control}} \) are the numbers of dead larvae in the first test and control tests, respectively.

2.5. Gas chromatography-mass spectrometry (GC/MS)

Gas chromatography-mass spectrometry (GC/MS) was used to determine the active substances from the present EO. Analyses were performed on Agilent capillary gas chromatograph coupled with mass spectrometer (MSD) (model GC Agilent 7890A; MS 5975C). Preparation of EO for this analysis includes 1:10 w/v dilution in dichloromethane. This retention indices (RI) were used for the identification of the EO components by comparing the obtained spectral data from analyzed EOs and RI from literature data.

2.6. Statistical analyses

One-way ANOVA with post-hoc Tukey HSD test at the sensitivity level \(p < 0.01 \) was used to determine significant differences between activities of EO against each bacterial strain and among activity of tested antibiotics. \(LC_{50} \) value for the brine shrimp lethality bioassay was derived from linear regression analysis using the Origin program (OriginLab version 8.0, Corporation, Northampton, MA, USA).

3. Results and Discussion

3.1. Antimicrobial activity

Antimicrobial activity of EO was evaluated by MIC and MBC/MFC values (Table 1) where lower value points out the stronger effect. According to the lowest obtained MIC and MBC values of *Eucalyptus* oil (6.2 μL/mL), *S. aureus* 2 strain showed the highest susceptibility. Great variation in antibacterial activities of EO against investigated strains of bacteria were present and obtained in a range from 6.2 to 25 μL/mL indicating strong strain specificities (Table 1). The most sensitive strains were *E. coli* 1, *S. aureus* 2 and *C. albicans* 1. Multiresistance was determined according to antibiotic resistance tests on clinical bacterial isolates *P. aeruginosa, E. coli* 1 and *E. coli* 2 (Table 2). *P. aeruginosa* strain proved to be the most resistant strain amongst all examined strains. This was also proved by susceptibility testing of bacterial strains to common antibiotics (Table 2). Moreover, strains of gram-negative *E. coli* 1 and *E. coli* 2 showed a prominent-significant activity (12.5-25 μL/mL). Amongst all the investigated antibiotics, tetracycline and streptomycin showed high activity against three bacterial strains including *S. aureus* 1, *S. aureus* 2 and *P. mirabilis*. The obtained results of antimicrobial activity of *Eucalyptus* EO are in accordance with the previously published data regarding the sensitivity of *S. aureus* and *E. coli* strains (Meyer et al., 1982; Trivedi and Hotchandani, 2004, Mulyaningsih et al., 2010; Damjanović et al., 2011; Bachir and Benali, 2012). Moreover, the present study, together with the previous analysis, support the antibacterial properties of *E. globulus* L. essential oils and suggest them as potent antibacterial agents (Sartorelli et al., 2007, Nourmi et al., 2011). In addition, both *Candida* strains showed sensitivity to the analyzed EO, while *C. albicans*1 strain presented higher sensitivity (Table 1). This result is in accordance with previous research data (Mulyaningsih et al., 2010, Damjanović et al., 2011). Furthermore, EO showed stronger effect against vaginal *C. albicans* strains comparing to previous obtained study where effect of EO against oral *C. albicans* strains was examined (MIC = 9.7 μL/mL) (Nourmi et al., 2011).

3.2. Brine shrimp toxicity assay

Results for toxicity assay \(LC_{50} \) values were based on the relationship between mortality(%) and oil concentration after 24 h and *Eucalyptus* oil exhibited an \(LC_{50} \) of 2.66 mg/mL (Fig. 2). Although *Eucalyptus* EO is mostly known as an antiseptic (Trivedi and Hotchandani, 2004), toxicological data on the systematic use of *Eucalyptus* EO are lacking. Based on the results of effectiveness of *Eucalyptus* EO against meticillin resistant *S. aureus* wound infection (Sherry et al., 2001), toxicity testing is necessary for further clinical studies. Thus, we used *A. salina* lethality test since it is considered as a rapid and effective method for preliminary assessment of toxicity (Sahgal et al., 2010). Good correlation between the in vivo tests in mice and the in vitro tests with *A. salina* were previously reported (\(r = 0.85, p<0.05 \)), indicating that brine shrimp toxicity assay is the appropriate test for determining acute toxicity (Parra et al., 2001). In accordance with this study, *A. salina* method could also be used in evaluation of EO toxicity for predicting local

Table 1

<table>
<thead>
<tr>
<th>Bacterial strains*</th>
<th>MIC (μL/mL)</th>
<th>MBC (μL/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli 1</td>
<td>12.5 a</td>
<td>12.5 c</td>
</tr>
<tr>
<td>E. coli 2</td>
<td>25 c</td>
<td>25 c</td>
</tr>
<tr>
<td>S. aureus 1</td>
<td>25 c</td>
<td>25 c</td>
</tr>
<tr>
<td>S. aureus 2</td>
<td>6.2 a</td>
<td>6.2 a</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>P. mirabilis</td>
<td>25 c</td>
<td>25 c</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fungal strains*</th>
<th>MIC (μL/mL)</th>
<th>MFC (μL/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. albicans 1</td>
<td>6.2 a</td>
<td>6.2 a</td>
</tr>
<tr>
<td>C. albicans 2</td>
<td>12.5 c</td>
<td>12.5 c</td>
</tr>
</tbody>
</table>

*Strain number; ND: not detected. **Values are expressed in μL/mL; MIC: minimum inhibitory concentration; MBC: minimum bactericidal concentration; MFC: minimum fungicidal concentration. a,b,c-significant differences between antimicrobial activity within strain of bacteria were determined by Tukey HSD test at \(p<0.01 \). In each column, different letters mean significant differences.
vaginal acute toxicity. Thus, we recommend further toxicity testing of Eucalyptus EO before application.

3.3. Chemical composition

In the investigated Eucalyptus EO, 16 components (99.79%) were identified. The major classes of compounds were oxygenated hydrocarbons (60.57%), aromatic monoterpenes (15.55%), and cyclic terpenes (15.33%), among which main constituents were eucalyptol (1,8-cineole), p-cymene and DL-limonene (Table 3). The GC/MS profile of EO exhibits that the hydrocarbon monoterpenes and oxygenated hydrocarbons were the main compounds in investigated EO. Dominant compounds were eucalyptol (1,8-cineole), p-cymene and DL-limonene, which is in accordance with other studies

activity due to their adverse effect on the structural integrity of the bacterial cell wall (Hinou et al., 1989; Cristoph et al., 2000). Notwithstanding, eucalyptol, one of the major constituent of Eucalyptus EO, as individual component tested to Gram-positive and Gram-negative bacteria, exhibited the lower antimicrobial activity in comparison to EO (Raman et al., 1995; Tzakou et al., 2001; Mulyaningisih et al., 2010). It is most likely that synergistic effects of minor components play an important role in antimicrobial activities (Burt, 2004).

4. Concluding remarks

Fig. 2. Relationship between mortality (%) and E. globulusL. EO concentration after 24 h.

(Silva et al., 2003; Mulyaningisih et al., 2010). According to the previous studies (Knobloch et al., 1988; Griffin et al., 1989), hydrocarbons tend to be relatively inactive, related to their limited hydrogen binding capacity and water solubility, thus hydrocarbon monoterpenes were characterized like weak antimicrobial agents. In contrast, oxygenated hydrocarbons like terpinen-4-ol, 1,8 cineole (eucalyptol) and linalool have been reported to significantly contribute to antibacterial

<table>
<thead>
<tr>
<th>Peak No.</th>
<th>Compound</th>
<th>R.I.(^a)</th>
<th>E. globulus EO (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Thuj-2,4(10)-diene</td>
<td>8.40</td>
<td>5.19</td>
</tr>
<tr>
<td>2.</td>
<td>β-Myrcene</td>
<td>8.97</td>
<td>1.23</td>
</tr>
<tr>
<td>3.</td>
<td>β-Pinene</td>
<td>9.03</td>
<td>1.12</td>
</tr>
<tr>
<td>4.</td>
<td>cis-Ocimene</td>
<td>9.46</td>
<td>0.17</td>
</tr>
<tr>
<td>5.</td>
<td>γ-Terpinene</td>
<td>10.24</td>
<td>0.63</td>
</tr>
<tr>
<td>6.</td>
<td>Aromatic monoterpenes</td>
<td>15.55</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>p-Cymene</td>
<td>9.70</td>
<td>15.55</td>
</tr>
<tr>
<td>8.</td>
<td>Cyclic terpenes</td>
<td>15.33</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>α-Phellandrene</td>
<td>9.41</td>
<td>0.24</td>
</tr>
<tr>
<td>10.</td>
<td>DL-limonene</td>
<td>9.78</td>
<td>14.90</td>
</tr>
<tr>
<td>11.</td>
<td>trans-Pinocarveol</td>
<td>12.00</td>
<td>0.19</td>
</tr>
<tr>
<td>12.</td>
<td>Oxygenated hydrocarbons</td>
<td>60.57</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Eucalyptol</td>
<td>9.93</td>
<td>59.63</td>
</tr>
<tr>
<td>14.</td>
<td>β-Linalool</td>
<td>10.84</td>
<td>0.26</td>
</tr>
<tr>
<td>15.</td>
<td>p-Menth-1-en-4-ol</td>
<td>12.68</td>
<td>0.27</td>
</tr>
<tr>
<td>16.</td>
<td>p-Menth-1-en-8-ol</td>
<td>12.91</td>
<td>0.41</td>
</tr>
</tbody>
</table>

*Retention indices relative to C\(_9\)–C\(_{24}\) n-alkanes on the HP 5MS column.
Isolated strains of vaginal microbial pathogens have shown strong strain specificity to the tested EO. *Eucalyptus* EO showed activity against Gram negative strains *E. coli* 1 and *E. coli* 2 which indicates *Eucalyptus* EO as a promising alternative for the treatment of vaginal infections caused by *E. coli*. Therefore, we could recommend *Eucalyptus* EO for further testing as potential antiseptic agent with local application in humans after detailed toxicity evaluation. Since the obtained results pointed out the resistance of clinical isolates of Gram-negative bacteria to conventional antibiotics, investigation of *Eucalyptus* EO as the possible alternative agent, in the treatment of vaginal infections, should draw more attention in the future.

Acknowledgments

This work was supported by grant no 172058 of the Ministry of Education, Science and Technological Development, Republic of Serbia. Acknowledgment to Dr Jan Sudi for chemical analysis and determination of chemical composition of essential oil.

Conflicts of interest

The authors declare that there is no conflict of interest.

References

Mulyaningsih, S., Sporer, F., Zimmermann, S., Reichling, J., Wink, M., 2010. Synergistic properties of the terpenoids aromadendrene and 1,8-cineole from the essential oil of *Eucalyptus globulus* against antibiotic-susceptible and antibiotic-resistant pathogens. Phytomedicine 17(13), 1061-1066.

